{"version":3,"file":"vendors-24e11f67.9729664bca28a8e6916d.bundle.js","mappings":";;;;;;;;;;;;;;;;;;;AAAA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;;AC3EA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;;;;AClLA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;AChCA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;;AC9IA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;ACvEA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;AC3FA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;;ACvBA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;AChLA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;;ACnBA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;AClIA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;;AC1DA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;ACvKA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;ACtGA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;ACXA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;ACJA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;AChGA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;ACTA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;ACxGA;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;ACAA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;ACjCA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;ACnCA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;ACpDA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;ACnCA;;;;;;;;;;;;;;;ACAA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;ACjDA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;AC3BA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;ACnGA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;;;;;AC5CA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;AC3EA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;AC5CA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;ACrFA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;ACJA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;ACzEA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;ACTA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;AC9GA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;AC1BA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;AChBA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;AChBA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;ACdA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;ACrCA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;AChCA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;AC/BA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;ACdA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;ACnCA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;;ACXA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;AC9CA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;;ACfA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;;;;;;;;ACpFA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;;AChLA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;ACnDA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;AC3BA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;ACdA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;;ACrGA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;ACjBA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;;;AC1BA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;AC9EA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;;;;;;;;;;;;;;;ACpEA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA","sources":["webpack://www.zeusteam.com/./node_modules/d3-geo/src/area.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/bounds.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/cartesian.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/centroid.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/circle.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/clip/antimeridian.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/clip/buffer.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/clip/circle.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/clip/extent.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/clip/index.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/clip/line.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/clip/rectangle.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/clip/rejoin.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/compose.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/constant.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/contains.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/distance.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/graticule.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/identity.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/index.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/interpolate.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/length.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/math.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/noop.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/path/area.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/path/bounds.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/path/centroid.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/path/context.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/path/index.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/path/measure.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/path/string.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/pointEqual.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/polygonContains.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/albers.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/albersUsa.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/azimuthal.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/azimuthalEqualArea.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/azimuthalEquidistant.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/conic.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/conicConformal.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/conicEqualArea.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/conicEquidistant.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/cylindricalEqualArea.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/equalEarth.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/equirectangular.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/fit.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/gnomonic.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/identity.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/index.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/mercator.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/naturalEarth1.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/orthographic.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/resample.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/stereographic.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/projection/transverseMercator.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/rotation.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/stream.js","webpack://www.zeusteam.com/./node_modules/d3-geo/src/transform.js"],"sourcesContent":["import {Adder} from \"d3-array\";\nimport {atan2, cos, quarterPi, radians, sin, tau} from \"./math.js\";\nimport noop from \"./noop.js\";\nimport stream from \"./stream.js\";\n\nexport var areaRingSum = new Adder();\n\n// hello?\n\nvar areaSum = new Adder(),\n lambda00,\n phi00,\n lambda0,\n cosPhi0,\n sinPhi0;\n\nexport var areaStream = {\n point: noop,\n lineStart: noop,\n lineEnd: noop,\n polygonStart: function() {\n areaRingSum = new Adder();\n areaStream.lineStart = areaRingStart;\n areaStream.lineEnd = areaRingEnd;\n },\n polygonEnd: function() {\n var areaRing = +areaRingSum;\n areaSum.add(areaRing < 0 ? tau + areaRing : areaRing);\n this.lineStart = this.lineEnd = this.point = noop;\n },\n sphere: function() {\n areaSum.add(tau);\n }\n};\n\nfunction areaRingStart() {\n areaStream.point = areaPointFirst;\n}\n\nfunction areaRingEnd() {\n areaPoint(lambda00, phi00);\n}\n\nfunction areaPointFirst(lambda, phi) {\n areaStream.point = areaPoint;\n lambda00 = lambda, phi00 = phi;\n lambda *= radians, phi *= radians;\n lambda0 = lambda, cosPhi0 = cos(phi = phi / 2 + quarterPi), sinPhi0 = sin(phi);\n}\n\nfunction areaPoint(lambda, phi) {\n lambda *= radians, phi *= radians;\n phi = phi / 2 + quarterPi; // half the angular distance from south pole\n\n // Spherical excess E for a spherical triangle with vertices: south pole,\n // previous point, current point. Uses a formula derived from Cagnoli’s\n // theorem. See Todhunter, Spherical Trig. (1871), Sec. 103, Eq. (2).\n var dLambda = lambda - lambda0,\n sdLambda = dLambda >= 0 ? 1 : -1,\n adLambda = sdLambda * dLambda,\n cosPhi = cos(phi),\n sinPhi = sin(phi),\n k = sinPhi0 * sinPhi,\n u = cosPhi0 * cosPhi + k * cos(adLambda),\n v = k * sdLambda * sin(adLambda);\n areaRingSum.add(atan2(v, u));\n\n // Advance the previous points.\n lambda0 = lambda, cosPhi0 = cosPhi, sinPhi0 = sinPhi;\n}\n\nexport default function(object) {\n areaSum = new Adder();\n stream(object, areaStream);\n return areaSum * 2;\n}\n","import {Adder} from \"d3-array\";\nimport {areaStream, areaRingSum} from \"./area.js\";\nimport {cartesian, cartesianCross, cartesianNormalizeInPlace, spherical} from \"./cartesian.js\";\nimport {abs, degrees, epsilon, radians} from \"./math.js\";\nimport stream from \"./stream.js\";\n\nvar lambda0, phi0, lambda1, phi1, // bounds\n lambda2, // previous lambda-coordinate\n lambda00, phi00, // first point\n p0, // previous 3D point\n deltaSum,\n ranges,\n range;\n\nvar boundsStream = {\n point: boundsPoint,\n lineStart: boundsLineStart,\n lineEnd: boundsLineEnd,\n polygonStart: function() {\n boundsStream.point = boundsRingPoint;\n boundsStream.lineStart = boundsRingStart;\n boundsStream.lineEnd = boundsRingEnd;\n deltaSum = new Adder();\n areaStream.polygonStart();\n },\n polygonEnd: function() {\n areaStream.polygonEnd();\n boundsStream.point = boundsPoint;\n boundsStream.lineStart = boundsLineStart;\n boundsStream.lineEnd = boundsLineEnd;\n if (areaRingSum < 0) lambda0 = -(lambda1 = 180), phi0 = -(phi1 = 90);\n else if (deltaSum > epsilon) phi1 = 90;\n else if (deltaSum < -epsilon) phi0 = -90;\n range[0] = lambda0, range[1] = lambda1;\n },\n sphere: function() {\n lambda0 = -(lambda1 = 180), phi0 = -(phi1 = 90);\n }\n};\n\nfunction boundsPoint(lambda, phi) {\n ranges.push(range = [lambda0 = lambda, lambda1 = lambda]);\n if (phi < phi0) phi0 = phi;\n if (phi > phi1) phi1 = phi;\n}\n\nfunction linePoint(lambda, phi) {\n var p = cartesian([lambda * radians, phi * radians]);\n if (p0) {\n var normal = cartesianCross(p0, p),\n equatorial = [normal[1], -normal[0], 0],\n inflection = cartesianCross(equatorial, normal);\n cartesianNormalizeInPlace(inflection);\n inflection = spherical(inflection);\n var delta = lambda - lambda2,\n sign = delta > 0 ? 1 : -1,\n lambdai = inflection[0] * degrees * sign,\n phii,\n antimeridian = abs(delta) > 180;\n if (antimeridian ^ (sign * lambda2 < lambdai && lambdai < sign * lambda)) {\n phii = inflection[1] * degrees;\n if (phii > phi1) phi1 = phii;\n } else if (lambdai = (lambdai + 360) % 360 - 180, antimeridian ^ (sign * lambda2 < lambdai && lambdai < sign * lambda)) {\n phii = -inflection[1] * degrees;\n if (phii < phi0) phi0 = phii;\n } else {\n if (phi < phi0) phi0 = phi;\n if (phi > phi1) phi1 = phi;\n }\n if (antimeridian) {\n if (lambda < lambda2) {\n if (angle(lambda0, lambda) > angle(lambda0, lambda1)) lambda1 = lambda;\n } else {\n if (angle(lambda, lambda1) > angle(lambda0, lambda1)) lambda0 = lambda;\n }\n } else {\n if (lambda1 >= lambda0) {\n if (lambda < lambda0) lambda0 = lambda;\n if (lambda > lambda1) lambda1 = lambda;\n } else {\n if (lambda > lambda2) {\n if (angle(lambda0, lambda) > angle(lambda0, lambda1)) lambda1 = lambda;\n } else {\n if (angle(lambda, lambda1) > angle(lambda0, lambda1)) lambda0 = lambda;\n }\n }\n }\n } else {\n ranges.push(range = [lambda0 = lambda, lambda1 = lambda]);\n }\n if (phi < phi0) phi0 = phi;\n if (phi > phi1) phi1 = phi;\n p0 = p, lambda2 = lambda;\n}\n\nfunction boundsLineStart() {\n boundsStream.point = linePoint;\n}\n\nfunction boundsLineEnd() {\n range[0] = lambda0, range[1] = lambda1;\n boundsStream.point = boundsPoint;\n p0 = null;\n}\n\nfunction boundsRingPoint(lambda, phi) {\n if (p0) {\n var delta = lambda - lambda2;\n deltaSum.add(abs(delta) > 180 ? delta + (delta > 0 ? 360 : -360) : delta);\n } else {\n lambda00 = lambda, phi00 = phi;\n }\n areaStream.point(lambda, phi);\n linePoint(lambda, phi);\n}\n\nfunction boundsRingStart() {\n areaStream.lineStart();\n}\n\nfunction boundsRingEnd() {\n boundsRingPoint(lambda00, phi00);\n areaStream.lineEnd();\n if (abs(deltaSum) > epsilon) lambda0 = -(lambda1 = 180);\n range[0] = lambda0, range[1] = lambda1;\n p0 = null;\n}\n\n// Finds the left-right distance between two longitudes.\n// This is almost the same as (lambda1 - lambda0 + 360°) % 360°, except that we want\n// the distance between ±180° to be 360°.\nfunction angle(lambda0, lambda1) {\n return (lambda1 -= lambda0) < 0 ? lambda1 + 360 : lambda1;\n}\n\nfunction rangeCompare(a, b) {\n return a[0] - b[0];\n}\n\nfunction rangeContains(range, x) {\n return range[0] <= range[1] ? range[0] <= x && x <= range[1] : x < range[0] || range[1] < x;\n}\n\nexport default function(feature) {\n var i, n, a, b, merged, deltaMax, delta;\n\n phi1 = lambda1 = -(lambda0 = phi0 = Infinity);\n ranges = [];\n stream(feature, boundsStream);\n\n // First, sort ranges by their minimum longitudes.\n if (n = ranges.length) {\n ranges.sort(rangeCompare);\n\n // Then, merge any ranges that overlap.\n for (i = 1, a = ranges[0], merged = [a]; i < n; ++i) {\n b = ranges[i];\n if (rangeContains(a, b[0]) || rangeContains(a, b[1])) {\n if (angle(a[0], b[1]) > angle(a[0], a[1])) a[1] = b[1];\n if (angle(b[0], a[1]) > angle(a[0], a[1])) a[0] = b[0];\n } else {\n merged.push(a = b);\n }\n }\n\n // Finally, find the largest gap between the merged ranges.\n // The final bounding box will be the inverse of this gap.\n for (deltaMax = -Infinity, n = merged.length - 1, i = 0, a = merged[n]; i <= n; a = b, ++i) {\n b = merged[i];\n if ((delta = angle(a[1], b[0])) > deltaMax) deltaMax = delta, lambda0 = b[0], lambda1 = a[1];\n }\n }\n\n ranges = range = null;\n\n return lambda0 === Infinity || phi0 === Infinity\n ? [[NaN, NaN], [NaN, NaN]]\n : [[lambda0, phi0], [lambda1, phi1]];\n}\n","import {asin, atan2, cos, sin, sqrt} from \"./math.js\";\n\nexport function spherical(cartesian) {\n return [atan2(cartesian[1], cartesian[0]), asin(cartesian[2])];\n}\n\nexport function cartesian(spherical) {\n var lambda = spherical[0], phi = spherical[1], cosPhi = cos(phi);\n return [cosPhi * cos(lambda), cosPhi * sin(lambda), sin(phi)];\n}\n\nexport function cartesianDot(a, b) {\n return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];\n}\n\nexport function cartesianCross(a, b) {\n return [a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0]];\n}\n\n// TODO return a\nexport function cartesianAddInPlace(a, b) {\n a[0] += b[0], a[1] += b[1], a[2] += b[2];\n}\n\nexport function cartesianScale(vector, k) {\n return [vector[0] * k, vector[1] * k, vector[2] * k];\n}\n\n// TODO return d\nexport function cartesianNormalizeInPlace(d) {\n var l = sqrt(d[0] * d[0] + d[1] * d[1] + d[2] * d[2]);\n d[0] /= l, d[1] /= l, d[2] /= l;\n}\n","import {Adder} from \"d3-array\";\nimport {asin, atan2, cos, degrees, epsilon, epsilon2, hypot, radians, sin, sqrt} from \"./math.js\";\nimport noop from \"./noop.js\";\nimport stream from \"./stream.js\";\n\nvar W0, W1,\n X0, Y0, Z0,\n X1, Y1, Z1,\n X2, Y2, Z2,\n lambda00, phi00, // first point\n x0, y0, z0; // previous point\n\nvar centroidStream = {\n sphere: noop,\n point: centroidPoint,\n lineStart: centroidLineStart,\n lineEnd: centroidLineEnd,\n polygonStart: function() {\n centroidStream.lineStart = centroidRingStart;\n centroidStream.lineEnd = centroidRingEnd;\n },\n polygonEnd: function() {\n centroidStream.lineStart = centroidLineStart;\n centroidStream.lineEnd = centroidLineEnd;\n }\n};\n\n// Arithmetic mean of Cartesian vectors.\nfunction centroidPoint(lambda, phi) {\n lambda *= radians, phi *= radians;\n var cosPhi = cos(phi);\n centroidPointCartesian(cosPhi * cos(lambda), cosPhi * sin(lambda), sin(phi));\n}\n\nfunction centroidPointCartesian(x, y, z) {\n ++W0;\n X0 += (x - X0) / W0;\n Y0 += (y - Y0) / W0;\n Z0 += (z - Z0) / W0;\n}\n\nfunction centroidLineStart() {\n centroidStream.point = centroidLinePointFirst;\n}\n\nfunction centroidLinePointFirst(lambda, phi) {\n lambda *= radians, phi *= radians;\n var cosPhi = cos(phi);\n x0 = cosPhi * cos(lambda);\n y0 = cosPhi * sin(lambda);\n z0 = sin(phi);\n centroidStream.point = centroidLinePoint;\n centroidPointCartesian(x0, y0, z0);\n}\n\nfunction centroidLinePoint(lambda, phi) {\n lambda *= radians, phi *= radians;\n var cosPhi = cos(phi),\n x = cosPhi * cos(lambda),\n y = cosPhi * sin(lambda),\n z = sin(phi),\n w = atan2(sqrt((w = y0 * z - z0 * y) * w + (w = z0 * x - x0 * z) * w + (w = x0 * y - y0 * x) * w), x0 * x + y0 * y + z0 * z);\n W1 += w;\n X1 += w * (x0 + (x0 = x));\n Y1 += w * (y0 + (y0 = y));\n Z1 += w * (z0 + (z0 = z));\n centroidPointCartesian(x0, y0, z0);\n}\n\nfunction centroidLineEnd() {\n centroidStream.point = centroidPoint;\n}\n\n// See J. E. Brock, The Inertia Tensor for a Spherical Triangle,\n// J. Applied Mechanics 42, 239 (1975).\nfunction centroidRingStart() {\n centroidStream.point = centroidRingPointFirst;\n}\n\nfunction centroidRingEnd() {\n centroidRingPoint(lambda00, phi00);\n centroidStream.point = centroidPoint;\n}\n\nfunction centroidRingPointFirst(lambda, phi) {\n lambda00 = lambda, phi00 = phi;\n lambda *= radians, phi *= radians;\n centroidStream.point = centroidRingPoint;\n var cosPhi = cos(phi);\n x0 = cosPhi * cos(lambda);\n y0 = cosPhi * sin(lambda);\n z0 = sin(phi);\n centroidPointCartesian(x0, y0, z0);\n}\n\nfunction centroidRingPoint(lambda, phi) {\n lambda *= radians, phi *= radians;\n var cosPhi = cos(phi),\n x = cosPhi * cos(lambda),\n y = cosPhi * sin(lambda),\n z = sin(phi),\n cx = y0 * z - z0 * y,\n cy = z0 * x - x0 * z,\n cz = x0 * y - y0 * x,\n m = hypot(cx, cy, cz),\n w = asin(m), // line weight = angle\n v = m && -w / m; // area weight multiplier\n X2.add(v * cx);\n Y2.add(v * cy);\n Z2.add(v * cz);\n W1 += w;\n X1 += w * (x0 + (x0 = x));\n Y1 += w * (y0 + (y0 = y));\n Z1 += w * (z0 + (z0 = z));\n centroidPointCartesian(x0, y0, z0);\n}\n\nexport default function(object) {\n W0 = W1 =\n X0 = Y0 = Z0 =\n X1 = Y1 = Z1 = 0;\n X2 = new Adder();\n Y2 = new Adder();\n Z2 = new Adder();\n stream(object, centroidStream);\n\n var x = +X2,\n y = +Y2,\n z = +Z2,\n m = hypot(x, y, z);\n\n // If the area-weighted ccentroid is undefined, fall back to length-weighted ccentroid.\n if (m < epsilon2) {\n x = X1, y = Y1, z = Z1;\n // If the feature has zero length, fall back to arithmetic mean of point vectors.\n if (W1 < epsilon) x = X0, y = Y0, z = Z0;\n m = hypot(x, y, z);\n // If the feature still has an undefined ccentroid, then return.\n if (m < epsilon2) return [NaN, NaN];\n }\n\n return [atan2(y, x) * degrees, asin(z / m) * degrees];\n}\n","import {cartesian, cartesianNormalizeInPlace, spherical} from \"./cartesian.js\";\nimport constant from \"./constant.js\";\nimport {acos, cos, degrees, epsilon, radians, sin, tau} from \"./math.js\";\nimport {rotateRadians} from \"./rotation.js\";\n\n// Generates a circle centered at [0°, 0°], with a given radius and precision.\nexport function circleStream(stream, radius, delta, direction, t0, t1) {\n if (!delta) return;\n var cosRadius = cos(radius),\n sinRadius = sin(radius),\n step = direction * delta;\n if (t0 == null) {\n t0 = radius + direction * tau;\n t1 = radius - step / 2;\n } else {\n t0 = circleRadius(cosRadius, t0);\n t1 = circleRadius(cosRadius, t1);\n if (direction > 0 ? t0 < t1 : t0 > t1) t0 += direction * tau;\n }\n for (var point, t = t0; direction > 0 ? t > t1 : t < t1; t -= step) {\n point = spherical([cosRadius, -sinRadius * cos(t), -sinRadius * sin(t)]);\n stream.point(point[0], point[1]);\n }\n}\n\n// Returns the signed angle of a cartesian point relative to [cosRadius, 0, 0].\nfunction circleRadius(cosRadius, point) {\n point = cartesian(point), point[0] -= cosRadius;\n cartesianNormalizeInPlace(point);\n var radius = acos(-point[1]);\n return ((-point[2] < 0 ? -radius : radius) + tau - epsilon) % tau;\n}\n\nexport default function() {\n var center = constant([0, 0]),\n radius = constant(90),\n precision = constant(6),\n ring,\n rotate,\n stream = {point: point};\n\n function point(x, y) {\n ring.push(x = rotate(x, y));\n x[0] *= degrees, x[1] *= degrees;\n }\n\n function circle() {\n var c = center.apply(this, arguments),\n r = radius.apply(this, arguments) * radians,\n p = precision.apply(this, arguments) * radians;\n ring = [];\n rotate = rotateRadians(-c[0] * radians, -c[1] * radians, 0).invert;\n circleStream(stream, r, p, 1);\n c = {type: \"Polygon\", coordinates: [ring]};\n ring = rotate = null;\n return c;\n }\n\n circle.center = function(_) {\n return arguments.length ? (center = typeof _ === \"function\" ? _ : constant([+_[0], +_[1]]), circle) : center;\n };\n\n circle.radius = function(_) {\n return arguments.length ? (radius = typeof _ === \"function\" ? _ : constant(+_), circle) : radius;\n };\n\n circle.precision = function(_) {\n return arguments.length ? (precision = typeof _ === \"function\" ? _ : constant(+_), circle) : precision;\n };\n\n return circle;\n}\n","import clip from \"./index.js\";\nimport {abs, atan, cos, epsilon, halfPi, pi, sin} from \"../math.js\";\n\nexport default clip(\n function() { return true; },\n clipAntimeridianLine,\n clipAntimeridianInterpolate,\n [-pi, -halfPi]\n);\n\n// Takes a line and cuts into visible segments. Return values: 0 - there were\n// intersections or the line was empty; 1 - no intersections; 2 - there were\n// intersections, and the first and last segments should be rejoined.\nfunction clipAntimeridianLine(stream) {\n var lambda0 = NaN,\n phi0 = NaN,\n sign0 = NaN,\n clean; // no intersections\n\n return {\n lineStart: function() {\n stream.lineStart();\n clean = 1;\n },\n point: function(lambda1, phi1) {\n var sign1 = lambda1 > 0 ? pi : -pi,\n delta = abs(lambda1 - lambda0);\n if (abs(delta - pi) < epsilon) { // line crosses a pole\n stream.point(lambda0, phi0 = (phi0 + phi1) / 2 > 0 ? halfPi : -halfPi);\n stream.point(sign0, phi0);\n stream.lineEnd();\n stream.lineStart();\n stream.point(sign1, phi0);\n stream.point(lambda1, phi0);\n clean = 0;\n } else if (sign0 !== sign1 && delta >= pi) { // line crosses antimeridian\n if (abs(lambda0 - sign0) < epsilon) lambda0 -= sign0 * epsilon; // handle degeneracies\n if (abs(lambda1 - sign1) < epsilon) lambda1 -= sign1 * epsilon;\n phi0 = clipAntimeridianIntersect(lambda0, phi0, lambda1, phi1);\n stream.point(sign0, phi0);\n stream.lineEnd();\n stream.lineStart();\n stream.point(sign1, phi0);\n clean = 0;\n }\n stream.point(lambda0 = lambda1, phi0 = phi1);\n sign0 = sign1;\n },\n lineEnd: function() {\n stream.lineEnd();\n lambda0 = phi0 = NaN;\n },\n clean: function() {\n return 2 - clean; // if intersections, rejoin first and last segments\n }\n };\n}\n\nfunction clipAntimeridianIntersect(lambda0, phi0, lambda1, phi1) {\n var cosPhi0,\n cosPhi1,\n sinLambda0Lambda1 = sin(lambda0 - lambda1);\n return abs(sinLambda0Lambda1) > epsilon\n ? atan((sin(phi0) * (cosPhi1 = cos(phi1)) * sin(lambda1)\n - sin(phi1) * (cosPhi0 = cos(phi0)) * sin(lambda0))\n / (cosPhi0 * cosPhi1 * sinLambda0Lambda1))\n : (phi0 + phi1) / 2;\n}\n\nfunction clipAntimeridianInterpolate(from, to, direction, stream) {\n var phi;\n if (from == null) {\n phi = direction * halfPi;\n stream.point(-pi, phi);\n stream.point(0, phi);\n stream.point(pi, phi);\n stream.point(pi, 0);\n stream.point(pi, -phi);\n stream.point(0, -phi);\n stream.point(-pi, -phi);\n stream.point(-pi, 0);\n stream.point(-pi, phi);\n } else if (abs(from[0] - to[0]) > epsilon) {\n var lambda = from[0] < to[0] ? pi : -pi;\n phi = direction * lambda / 2;\n stream.point(-lambda, phi);\n stream.point(0, phi);\n stream.point(lambda, phi);\n } else {\n stream.point(to[0], to[1]);\n }\n}\n","import noop from \"../noop.js\";\n\nexport default function() {\n var lines = [],\n line;\n return {\n point: function(x, y, m) {\n line.push([x, y, m]);\n },\n lineStart: function() {\n lines.push(line = []);\n },\n lineEnd: noop,\n rejoin: function() {\n if (lines.length > 1) lines.push(lines.pop().concat(lines.shift()));\n },\n result: function() {\n var result = lines;\n lines = [];\n line = null;\n return result;\n }\n };\n}\n","import {cartesian, cartesianAddInPlace, cartesianCross, cartesianDot, cartesianScale, spherical} from \"../cartesian.js\";\nimport {circleStream} from \"../circle.js\";\nimport {abs, cos, epsilon, pi, radians, sqrt} from \"../math.js\";\nimport pointEqual from \"../pointEqual.js\";\nimport clip from \"./index.js\";\n\nexport default function(radius) {\n var cr = cos(radius),\n delta = 6 * radians,\n smallRadius = cr > 0,\n notHemisphere = abs(cr) > epsilon; // TODO optimise for this common case\n\n function interpolate(from, to, direction, stream) {\n circleStream(stream, radius, delta, direction, from, to);\n }\n\n function visible(lambda, phi) {\n return cos(lambda) * cos(phi) > cr;\n }\n\n // Takes a line and cuts into visible segments. Return values used for polygon\n // clipping: 0 - there were intersections or the line was empty; 1 - no\n // intersections 2 - there were intersections, and the first and last segments\n // should be rejoined.\n function clipLine(stream) {\n var point0, // previous point\n c0, // code for previous point\n v0, // visibility of previous point\n v00, // visibility of first point\n clean; // no intersections\n return {\n lineStart: function() {\n v00 = v0 = false;\n clean = 1;\n },\n point: function(lambda, phi) {\n var point1 = [lambda, phi],\n point2,\n v = visible(lambda, phi),\n c = smallRadius\n ? v ? 0 : code(lambda, phi)\n : v ? code(lambda + (lambda < 0 ? pi : -pi), phi) : 0;\n if (!point0 && (v00 = v0 = v)) stream.lineStart();\n if (v !== v0) {\n point2 = intersect(point0, point1);\n if (!point2 || pointEqual(point0, point2) || pointEqual(point1, point2))\n point1[2] = 1;\n }\n if (v !== v0) {\n clean = 0;\n if (v) {\n // outside going in\n stream.lineStart();\n point2 = intersect(point1, point0);\n stream.point(point2[0], point2[1]);\n } else {\n // inside going out\n point2 = intersect(point0, point1);\n stream.point(point2[0], point2[1], 2);\n stream.lineEnd();\n }\n point0 = point2;\n } else if (notHemisphere && point0 && smallRadius ^ v) {\n var t;\n // If the codes for two points are different, or are both zero,\n // and there this segment intersects with the small circle.\n if (!(c & c0) && (t = intersect(point1, point0, true))) {\n clean = 0;\n if (smallRadius) {\n stream.lineStart();\n stream.point(t[0][0], t[0][1]);\n stream.point(t[1][0], t[1][1]);\n stream.lineEnd();\n } else {\n stream.point(t[1][0], t[1][1]);\n stream.lineEnd();\n stream.lineStart();\n stream.point(t[0][0], t[0][1], 3);\n }\n }\n }\n if (v && (!point0 || !pointEqual(point0, point1))) {\n stream.point(point1[0], point1[1]);\n }\n point0 = point1, v0 = v, c0 = c;\n },\n lineEnd: function() {\n if (v0) stream.lineEnd();\n point0 = null;\n },\n // Rejoin first and last segments if there were intersections and the first\n // and last points were visible.\n clean: function() {\n return clean | ((v00 && v0) << 1);\n }\n };\n }\n\n // Intersects the great circle between a and b with the clip circle.\n function intersect(a, b, two) {\n var pa = cartesian(a),\n pb = cartesian(b);\n\n // We have two planes, n1.p = d1 and n2.p = d2.\n // Find intersection line p(t) = c1 n1 + c2 n2 + t (n1 ⨯ n2).\n var n1 = [1, 0, 0], // normal\n n2 = cartesianCross(pa, pb),\n n2n2 = cartesianDot(n2, n2),\n n1n2 = n2[0], // cartesianDot(n1, n2),\n determinant = n2n2 - n1n2 * n1n2;\n\n // Two polar points.\n if (!determinant) return !two && a;\n\n var c1 = cr * n2n2 / determinant,\n c2 = -cr * n1n2 / determinant,\n n1xn2 = cartesianCross(n1, n2),\n A = cartesianScale(n1, c1),\n B = cartesianScale(n2, c2);\n cartesianAddInPlace(A, B);\n\n // Solve |p(t)|^2 = 1.\n var u = n1xn2,\n w = cartesianDot(A, u),\n uu = cartesianDot(u, u),\n t2 = w * w - uu * (cartesianDot(A, A) - 1);\n\n if (t2 < 0) return;\n\n var t = sqrt(t2),\n q = cartesianScale(u, (-w - t) / uu);\n cartesianAddInPlace(q, A);\n q = spherical(q);\n\n if (!two) return q;\n\n // Two intersection points.\n var lambda0 = a[0],\n lambda1 = b[0],\n phi0 = a[1],\n phi1 = b[1],\n z;\n\n if (lambda1 < lambda0) z = lambda0, lambda0 = lambda1, lambda1 = z;\n\n var delta = lambda1 - lambda0,\n polar = abs(delta - pi) < epsilon,\n meridian = polar || delta < epsilon;\n\n if (!polar && phi1 < phi0) z = phi0, phi0 = phi1, phi1 = z;\n\n // Check that the first point is between a and b.\n if (meridian\n ? polar\n ? phi0 + phi1 > 0 ^ q[1] < (abs(q[0] - lambda0) < epsilon ? phi0 : phi1)\n : phi0 <= q[1] && q[1] <= phi1\n : delta > pi ^ (lambda0 <= q[0] && q[0] <= lambda1)) {\n var q1 = cartesianScale(u, (-w + t) / uu);\n cartesianAddInPlace(q1, A);\n return [q, spherical(q1)];\n }\n }\n\n // Generates a 4-bit vector representing the location of a point relative to\n // the small circle's bounding box.\n function code(lambda, phi) {\n var r = smallRadius ? radius : pi - radius,\n code = 0;\n if (lambda < -r) code |= 1; // left\n else if (lambda > r) code |= 2; // right\n if (phi < -r) code |= 4; // below\n else if (phi > r) code |= 8; // above\n return code;\n }\n\n return clip(visible, clipLine, interpolate, smallRadius ? [0, -radius] : [-pi, radius - pi]);\n}\n","import clipRectangle from \"./rectangle.js\";\n\nexport default function() {\n var x0 = 0,\n y0 = 0,\n x1 = 960,\n y1 = 500,\n cache,\n cacheStream,\n clip;\n\n return clip = {\n stream: function(stream) {\n return cache && cacheStream === stream ? cache : cache = clipRectangle(x0, y0, x1, y1)(cacheStream = stream);\n },\n extent: function(_) {\n return arguments.length ? (x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1], cache = cacheStream = null, clip) : [[x0, y0], [x1, y1]];\n }\n };\n}\n","import clipBuffer from \"./buffer.js\";\nimport clipRejoin from \"./rejoin.js\";\nimport {epsilon, halfPi} from \"../math.js\";\nimport polygonContains from \"../polygonContains.js\";\nimport {merge} from \"d3-array\";\n\nexport default function(pointVisible, clipLine, interpolate, start) {\n return function(sink) {\n var line = clipLine(sink),\n ringBuffer = clipBuffer(),\n ringSink = clipLine(ringBuffer),\n polygonStarted = false,\n polygon,\n segments,\n ring;\n\n var clip = {\n point: point,\n lineStart: lineStart,\n lineEnd: lineEnd,\n polygonStart: function() {\n clip.point = pointRing;\n clip.lineStart = ringStart;\n clip.lineEnd = ringEnd;\n segments = [];\n polygon = [];\n },\n polygonEnd: function() {\n clip.point = point;\n clip.lineStart = lineStart;\n clip.lineEnd = lineEnd;\n segments = merge(segments);\n var startInside = polygonContains(polygon, start);\n if (segments.length) {\n if (!polygonStarted) sink.polygonStart(), polygonStarted = true;\n clipRejoin(segments, compareIntersection, startInside, interpolate, sink);\n } else if (startInside) {\n if (!polygonStarted) sink.polygonStart(), polygonStarted = true;\n sink.lineStart();\n interpolate(null, null, 1, sink);\n sink.lineEnd();\n }\n if (polygonStarted) sink.polygonEnd(), polygonStarted = false;\n segments = polygon = null;\n },\n sphere: function() {\n sink.polygonStart();\n sink.lineStart();\n interpolate(null, null, 1, sink);\n sink.lineEnd();\n sink.polygonEnd();\n }\n };\n\n function point(lambda, phi) {\n if (pointVisible(lambda, phi)) sink.point(lambda, phi);\n }\n\n function pointLine(lambda, phi) {\n line.point(lambda, phi);\n }\n\n function lineStart() {\n clip.point = pointLine;\n line.lineStart();\n }\n\n function lineEnd() {\n clip.point = point;\n line.lineEnd();\n }\n\n function pointRing(lambda, phi) {\n ring.push([lambda, phi]);\n ringSink.point(lambda, phi);\n }\n\n function ringStart() {\n ringSink.lineStart();\n ring = [];\n }\n\n function ringEnd() {\n pointRing(ring[0][0], ring[0][1]);\n ringSink.lineEnd();\n\n var clean = ringSink.clean(),\n ringSegments = ringBuffer.result(),\n i, n = ringSegments.length, m,\n segment,\n point;\n\n ring.pop();\n polygon.push(ring);\n ring = null;\n\n if (!n) return;\n\n // No intersections.\n if (clean & 1) {\n segment = ringSegments[0];\n if ((m = segment.length - 1) > 0) {\n if (!polygonStarted) sink.polygonStart(), polygonStarted = true;\n sink.lineStart();\n for (i = 0; i < m; ++i) sink.point((point = segment[i])[0], point[1]);\n sink.lineEnd();\n }\n return;\n }\n\n // Rejoin connected segments.\n // TODO reuse ringBuffer.rejoin()?\n if (n > 1 && clean & 2) ringSegments.push(ringSegments.pop().concat(ringSegments.shift()));\n\n segments.push(ringSegments.filter(validSegment));\n }\n\n return clip;\n };\n}\n\nfunction validSegment(segment) {\n return segment.length > 1;\n}\n\n// Intersections are sorted along the clip edge. For both antimeridian cutting\n// and circle clipping, the same comparison is used.\nfunction compareIntersection(a, b) {\n return ((a = a.x)[0] < 0 ? a[1] - halfPi - epsilon : halfPi - a[1])\n - ((b = b.x)[0] < 0 ? b[1] - halfPi - epsilon : halfPi - b[1]);\n}\n","export default function(a, b, x0, y0, x1, y1) {\n var ax = a[0],\n ay = a[1],\n bx = b[0],\n by = b[1],\n t0 = 0,\n t1 = 1,\n dx = bx - ax,\n dy = by - ay,\n r;\n\n r = x0 - ax;\n if (!dx && r > 0) return;\n r /= dx;\n if (dx < 0) {\n if (r < t0) return;\n if (r < t1) t1 = r;\n } else if (dx > 0) {\n if (r > t1) return;\n if (r > t0) t0 = r;\n }\n\n r = x1 - ax;\n if (!dx && r < 0) return;\n r /= dx;\n if (dx < 0) {\n if (r > t1) return;\n if (r > t0) t0 = r;\n } else if (dx > 0) {\n if (r < t0) return;\n if (r < t1) t1 = r;\n }\n\n r = y0 - ay;\n if (!dy && r > 0) return;\n r /= dy;\n if (dy < 0) {\n if (r < t0) return;\n if (r < t1) t1 = r;\n } else if (dy > 0) {\n if (r > t1) return;\n if (r > t0) t0 = r;\n }\n\n r = y1 - ay;\n if (!dy && r < 0) return;\n r /= dy;\n if (dy < 0) {\n if (r > t1) return;\n if (r > t0) t0 = r;\n } else if (dy > 0) {\n if (r < t0) return;\n if (r < t1) t1 = r;\n }\n\n if (t0 > 0) a[0] = ax + t0 * dx, a[1] = ay + t0 * dy;\n if (t1 < 1) b[0] = ax + t1 * dx, b[1] = ay + t1 * dy;\n return true;\n}\n","import {abs, epsilon} from \"../math.js\";\nimport clipBuffer from \"./buffer.js\";\nimport clipLine from \"./line.js\";\nimport clipRejoin from \"./rejoin.js\";\nimport {merge} from \"d3-array\";\n\nvar clipMax = 1e9, clipMin = -clipMax;\n\n// TODO Use d3-polygon’s polygonContains here for the ring check?\n// TODO Eliminate duplicate buffering in clipBuffer and polygon.push?\n\nexport default function clipRectangle(x0, y0, x1, y1) {\n\n function visible(x, y) {\n return x0 <= x && x <= x1 && y0 <= y && y <= y1;\n }\n\n function interpolate(from, to, direction, stream) {\n var a = 0, a1 = 0;\n if (from == null\n || (a = corner(from, direction)) !== (a1 = corner(to, direction))\n || comparePoint(from, to) < 0 ^ direction > 0) {\n do stream.point(a === 0 || a === 3 ? x0 : x1, a > 1 ? y1 : y0);\n while ((a = (a + direction + 4) % 4) !== a1);\n } else {\n stream.point(to[0], to[1]);\n }\n }\n\n function corner(p, direction) {\n return abs(p[0] - x0) < epsilon ? direction > 0 ? 0 : 3\n : abs(p[0] - x1) < epsilon ? direction > 0 ? 2 : 1\n : abs(p[1] - y0) < epsilon ? direction > 0 ? 1 : 0\n : direction > 0 ? 3 : 2; // abs(p[1] - y1) < epsilon\n }\n\n function compareIntersection(a, b) {\n return comparePoint(a.x, b.x);\n }\n\n function comparePoint(a, b) {\n var ca = corner(a, 1),\n cb = corner(b, 1);\n return ca !== cb ? ca - cb\n : ca === 0 ? b[1] - a[1]\n : ca === 1 ? a[0] - b[0]\n : ca === 2 ? a[1] - b[1]\n : b[0] - a[0];\n }\n\n return function(stream) {\n var activeStream = stream,\n bufferStream = clipBuffer(),\n segments,\n polygon,\n ring,\n x__, y__, v__, // first point\n x_, y_, v_, // previous point\n first,\n clean;\n\n var clipStream = {\n point: point,\n lineStart: lineStart,\n lineEnd: lineEnd,\n polygonStart: polygonStart,\n polygonEnd: polygonEnd\n };\n\n function point(x, y) {\n if (visible(x, y)) activeStream.point(x, y);\n }\n\n function polygonInside() {\n var winding = 0;\n\n for (var i = 0, n = polygon.length; i < n; ++i) {\n for (var ring = polygon[i], j = 1, m = ring.length, point = ring[0], a0, a1, b0 = point[0], b1 = point[1]; j < m; ++j) {\n a0 = b0, a1 = b1, point = ring[j], b0 = point[0], b1 = point[1];\n if (a1 <= y1) { if (b1 > y1 && (b0 - a0) * (y1 - a1) > (b1 - a1) * (x0 - a0)) ++winding; }\n else { if (b1 <= y1 && (b0 - a0) * (y1 - a1) < (b1 - a1) * (x0 - a0)) --winding; }\n }\n }\n\n return winding;\n }\n\n // Buffer geometry within a polygon and then clip it en masse.\n function polygonStart() {\n activeStream = bufferStream, segments = [], polygon = [], clean = true;\n }\n\n function polygonEnd() {\n var startInside = polygonInside(),\n cleanInside = clean && startInside,\n visible = (segments = merge(segments)).length;\n if (cleanInside || visible) {\n stream.polygonStart();\n if (cleanInside) {\n stream.lineStart();\n interpolate(null, null, 1, stream);\n stream.lineEnd();\n }\n if (visible) {\n clipRejoin(segments, compareIntersection, startInside, interpolate, stream);\n }\n stream.polygonEnd();\n }\n activeStream = stream, segments = polygon = ring = null;\n }\n\n function lineStart() {\n clipStream.point = linePoint;\n if (polygon) polygon.push(ring = []);\n first = true;\n v_ = false;\n x_ = y_ = NaN;\n }\n\n // TODO rather than special-case polygons, simply handle them separately.\n // Ideally, coincident intersection points should be jittered to avoid\n // clipping issues.\n function lineEnd() {\n if (segments) {\n linePoint(x__, y__);\n if (v__ && v_) bufferStream.rejoin();\n segments.push(bufferStream.result());\n }\n clipStream.point = point;\n if (v_) activeStream.lineEnd();\n }\n\n function linePoint(x, y) {\n var v = visible(x, y);\n if (polygon) ring.push([x, y]);\n if (first) {\n x__ = x, y__ = y, v__ = v;\n first = false;\n if (v) {\n activeStream.lineStart();\n activeStream.point(x, y);\n }\n } else {\n if (v && v_) activeStream.point(x, y);\n else {\n var a = [x_ = Math.max(clipMin, Math.min(clipMax, x_)), y_ = Math.max(clipMin, Math.min(clipMax, y_))],\n b = [x = Math.max(clipMin, Math.min(clipMax, x)), y = Math.max(clipMin, Math.min(clipMax, y))];\n if (clipLine(a, b, x0, y0, x1, y1)) {\n if (!v_) {\n activeStream.lineStart();\n activeStream.point(a[0], a[1]);\n }\n activeStream.point(b[0], b[1]);\n if (!v) activeStream.lineEnd();\n clean = false;\n } else if (v) {\n activeStream.lineStart();\n activeStream.point(x, y);\n clean = false;\n }\n }\n }\n x_ = x, y_ = y, v_ = v;\n }\n\n return clipStream;\n };\n}\n","import pointEqual from \"../pointEqual.js\";\nimport {epsilon} from \"../math.js\";\n\nfunction Intersection(point, points, other, entry) {\n this.x = point;\n this.z = points;\n this.o = other; // another intersection\n this.e = entry; // is an entry?\n this.v = false; // visited\n this.n = this.p = null; // next & previous\n}\n\n// A generalized polygon clipping algorithm: given a polygon that has been cut\n// into its visible line segments, and rejoins the segments by interpolating\n// along the clip edge.\nexport default function(segments, compareIntersection, startInside, interpolate, stream) {\n var subject = [],\n clip = [],\n i,\n n;\n\n segments.forEach(function(segment) {\n if ((n = segment.length - 1) <= 0) return;\n var n, p0 = segment[0], p1 = segment[n], x;\n\n if (pointEqual(p0, p1)) {\n if (!p0[2] && !p1[2]) {\n stream.lineStart();\n for (i = 0; i < n; ++i) stream.point((p0 = segment[i])[0], p0[1]);\n stream.lineEnd();\n return;\n }\n // handle degenerate cases by moving the point\n p1[0] += 2 * epsilon;\n }\n\n subject.push(x = new Intersection(p0, segment, null, true));\n clip.push(x.o = new Intersection(p0, null, x, false));\n subject.push(x = new Intersection(p1, segment, null, false));\n clip.push(x.o = new Intersection(p1, null, x, true));\n });\n\n if (!subject.length) return;\n\n clip.sort(compareIntersection);\n link(subject);\n link(clip);\n\n for (i = 0, n = clip.length; i < n; ++i) {\n clip[i].e = startInside = !startInside;\n }\n\n var start = subject[0],\n points,\n point;\n\n while (1) {\n // Find first unvisited intersection.\n var current = start,\n isSubject = true;\n while (current.v) if ((current = current.n) === start) return;\n points = current.z;\n stream.lineStart();\n do {\n current.v = current.o.v = true;\n if (current.e) {\n if (isSubject) {\n for (i = 0, n = points.length; i < n; ++i) stream.point((point = points[i])[0], point[1]);\n } else {\n interpolate(current.x, current.n.x, 1, stream);\n }\n current = current.n;\n } else {\n if (isSubject) {\n points = current.p.z;\n for (i = points.length - 1; i >= 0; --i) stream.point((point = points[i])[0], point[1]);\n } else {\n interpolate(current.x, current.p.x, -1, stream);\n }\n current = current.p;\n }\n current = current.o;\n points = current.z;\n isSubject = !isSubject;\n } while (!current.v);\n stream.lineEnd();\n }\n}\n\nfunction link(array) {\n if (!(n = array.length)) return;\n var n,\n i = 0,\n a = array[0],\n b;\n while (++i < n) {\n a.n = b = array[i];\n b.p = a;\n a = b;\n }\n a.n = b = array[0];\n b.p = a;\n}\n","export default function(a, b) {\n\n function compose(x, y) {\n return x = a(x, y), b(x[0], x[1]);\n }\n\n if (a.invert && b.invert) compose.invert = function(x, y) {\n return x = b.invert(x, y), x && a.invert(x[0], x[1]);\n };\n\n return compose;\n}\n","export default function(x) {\n return function() {\n return x;\n };\n}\n","import {default as polygonContains} from \"./polygonContains.js\";\nimport {default as distance} from \"./distance.js\";\nimport {epsilon2, radians} from \"./math.js\";\n\nvar containsObjectType = {\n Feature: function(object, point) {\n return containsGeometry(object.geometry, point);\n },\n FeatureCollection: function(object, point) {\n var features = object.features, i = -1, n = features.length;\n while (++i < n) if (containsGeometry(features[i].geometry, point)) return true;\n return false;\n }\n};\n\nvar containsGeometryType = {\n Sphere: function() {\n return true;\n },\n Point: function(object, point) {\n return containsPoint(object.coordinates, point);\n },\n MultiPoint: function(object, point) {\n var coordinates = object.coordinates, i = -1, n = coordinates.length;\n while (++i < n) if (containsPoint(coordinates[i], point)) return true;\n return false;\n },\n LineString: function(object, point) {\n return containsLine(object.coordinates, point);\n },\n MultiLineString: function(object, point) {\n var coordinates = object.coordinates, i = -1, n = coordinates.length;\n while (++i < n) if (containsLine(coordinates[i], point)) return true;\n return false;\n },\n Polygon: function(object, point) {\n return containsPolygon(object.coordinates, point);\n },\n MultiPolygon: function(object, point) {\n var coordinates = object.coordinates, i = -1, n = coordinates.length;\n while (++i < n) if (containsPolygon(coordinates[i], point)) return true;\n return false;\n },\n GeometryCollection: function(object, point) {\n var geometries = object.geometries, i = -1, n = geometries.length;\n while (++i < n) if (containsGeometry(geometries[i], point)) return true;\n return false;\n }\n};\n\nfunction containsGeometry(geometry, point) {\n return geometry && containsGeometryType.hasOwnProperty(geometry.type)\n ? containsGeometryType[geometry.type](geometry, point)\n : false;\n}\n\nfunction containsPoint(coordinates, point) {\n return distance(coordinates, point) === 0;\n}\n\nfunction containsLine(coordinates, point) {\n var ao, bo, ab;\n for (var i = 0, n = coordinates.length; i < n; i++) {\n bo = distance(coordinates[i], point);\n if (bo === 0) return true;\n if (i > 0) {\n ab = distance(coordinates[i], coordinates[i - 1]);\n if (\n ab > 0 &&\n ao <= ab &&\n bo <= ab &&\n (ao + bo - ab) * (1 - Math.pow((ao - bo) / ab, 2)) < epsilon2 * ab\n )\n return true;\n }\n ao = bo;\n }\n return false;\n}\n\nfunction containsPolygon(coordinates, point) {\n return !!polygonContains(coordinates.map(ringRadians), pointRadians(point));\n}\n\nfunction ringRadians(ring) {\n return ring = ring.map(pointRadians), ring.pop(), ring;\n}\n\nfunction pointRadians(point) {\n return [point[0] * radians, point[1] * radians];\n}\n\nexport default function(object, point) {\n return (object && containsObjectType.hasOwnProperty(object.type)\n ? containsObjectType[object.type]\n : containsGeometry)(object, point);\n}\n","import length from \"./length.js\";\n\nvar coordinates = [null, null],\n object = {type: \"LineString\", coordinates: coordinates};\n\nexport default function(a, b) {\n coordinates[0] = a;\n coordinates[1] = b;\n return length(object);\n}\n","import {range} from \"d3-array\";\nimport {abs, ceil, epsilon} from \"./math.js\";\n\nfunction graticuleX(y0, y1, dy) {\n var y = range(y0, y1 - epsilon, dy).concat(y1);\n return function(x) { return y.map(function(y) { return [x, y]; }); };\n}\n\nfunction graticuleY(x0, x1, dx) {\n var x = range(x0, x1 - epsilon, dx).concat(x1);\n return function(y) { return x.map(function(x) { return [x, y]; }); };\n}\n\nexport default function graticule() {\n var x1, x0, X1, X0,\n y1, y0, Y1, Y0,\n dx = 10, dy = dx, DX = 90, DY = 360,\n x, y, X, Y,\n precision = 2.5;\n\n function graticule() {\n return {type: \"MultiLineString\", coordinates: lines()};\n }\n\n function lines() {\n return range(ceil(X0 / DX) * DX, X1, DX).map(X)\n .concat(range(ceil(Y0 / DY) * DY, Y1, DY).map(Y))\n .concat(range(ceil(x0 / dx) * dx, x1, dx).filter(function(x) { return abs(x % DX) > epsilon; }).map(x))\n .concat(range(ceil(y0 / dy) * dy, y1, dy).filter(function(y) { return abs(y % DY) > epsilon; }).map(y));\n }\n\n graticule.lines = function() {\n return lines().map(function(coordinates) { return {type: \"LineString\", coordinates: coordinates}; });\n };\n\n graticule.outline = function() {\n return {\n type: \"Polygon\",\n coordinates: [\n X(X0).concat(\n Y(Y1).slice(1),\n X(X1).reverse().slice(1),\n Y(Y0).reverse().slice(1))\n ]\n };\n };\n\n graticule.extent = function(_) {\n if (!arguments.length) return graticule.extentMinor();\n return graticule.extentMajor(_).extentMinor(_);\n };\n\n graticule.extentMajor = function(_) {\n if (!arguments.length) return [[X0, Y0], [X1, Y1]];\n X0 = +_[0][0], X1 = +_[1][0];\n Y0 = +_[0][1], Y1 = +_[1][1];\n if (X0 > X1) _ = X0, X0 = X1, X1 = _;\n if (Y0 > Y1) _ = Y0, Y0 = Y1, Y1 = _;\n return graticule.precision(precision);\n };\n\n graticule.extentMinor = function(_) {\n if (!arguments.length) return [[x0, y0], [x1, y1]];\n x0 = +_[0][0], x1 = +_[1][0];\n y0 = +_[0][1], y1 = +_[1][1];\n if (x0 > x1) _ = x0, x0 = x1, x1 = _;\n if (y0 > y1) _ = y0, y0 = y1, y1 = _;\n return graticule.precision(precision);\n };\n\n graticule.step = function(_) {\n if (!arguments.length) return graticule.stepMinor();\n return graticule.stepMajor(_).stepMinor(_);\n };\n\n graticule.stepMajor = function(_) {\n if (!arguments.length) return [DX, DY];\n DX = +_[0], DY = +_[1];\n return graticule;\n };\n\n graticule.stepMinor = function(_) {\n if (!arguments.length) return [dx, dy];\n dx = +_[0], dy = +_[1];\n return graticule;\n };\n\n graticule.precision = function(_) {\n if (!arguments.length) return precision;\n precision = +_;\n x = graticuleX(y0, y1, 90);\n y = graticuleY(x0, x1, precision);\n X = graticuleX(Y0, Y1, 90);\n Y = graticuleY(X0, X1, precision);\n return graticule;\n };\n\n return graticule\n .extentMajor([[-180, -90 + epsilon], [180, 90 - epsilon]])\n .extentMinor([[-180, -80 - epsilon], [180, 80 + epsilon]]);\n}\n\nexport function graticule10() {\n return graticule()();\n}\n","export default x => x;\n","export {default as geoArea} from \"./area.js\";\nexport {default as geoBounds} from \"./bounds.js\";\nexport {default as geoCentroid} from \"./centroid.js\";\nexport {default as geoCircle} from \"./circle.js\";\nexport {default as geoClipAntimeridian} from \"./clip/antimeridian.js\";\nexport {default as geoClipCircle} from \"./clip/circle.js\";\nexport {default as geoClipExtent} from \"./clip/extent.js\"; // DEPRECATED! Use d3.geoIdentity().clipExtent(…).\nexport {default as geoClipRectangle} from \"./clip/rectangle.js\";\nexport {default as geoContains} from \"./contains.js\";\nexport {default as geoDistance} from \"./distance.js\";\nexport {default as geoGraticule, graticule10 as geoGraticule10} from \"./graticule.js\";\nexport {default as geoInterpolate} from \"./interpolate.js\";\nexport {default as geoLength} from \"./length.js\";\nexport {default as geoPath} from \"./path/index.js\";\nexport {default as geoAlbers} from \"./projection/albers.js\";\nexport {default as geoAlbersUsa} from \"./projection/albersUsa.js\";\nexport {default as geoAzimuthalEqualArea, azimuthalEqualAreaRaw as geoAzimuthalEqualAreaRaw} from \"./projection/azimuthalEqualArea.js\";\nexport {default as geoAzimuthalEquidistant, azimuthalEquidistantRaw as geoAzimuthalEquidistantRaw} from \"./projection/azimuthalEquidistant.js\";\nexport {default as geoConicConformal, conicConformalRaw as geoConicConformalRaw} from \"./projection/conicConformal.js\";\nexport {default as geoConicEqualArea, conicEqualAreaRaw as geoConicEqualAreaRaw} from \"./projection/conicEqualArea.js\";\nexport {default as geoConicEquidistant, conicEquidistantRaw as geoConicEquidistantRaw} from \"./projection/conicEquidistant.js\";\nexport {default as geoEqualEarth, equalEarthRaw as geoEqualEarthRaw} from \"./projection/equalEarth.js\";\nexport {default as geoEquirectangular, equirectangularRaw as geoEquirectangularRaw} from \"./projection/equirectangular.js\";\nexport {default as geoGnomonic, gnomonicRaw as geoGnomonicRaw} from \"./projection/gnomonic.js\";\nexport {default as geoIdentity} from \"./projection/identity.js\";\nexport {default as geoProjection, projectionMutator as geoProjectionMutator} from \"./projection/index.js\";\nexport {default as geoMercator, mercatorRaw as geoMercatorRaw} from \"./projection/mercator.js\";\nexport {default as geoNaturalEarth1, naturalEarth1Raw as geoNaturalEarth1Raw} from \"./projection/naturalEarth1.js\";\nexport {default as geoOrthographic, orthographicRaw as geoOrthographicRaw} from \"./projection/orthographic.js\";\nexport {default as geoStereographic, stereographicRaw as geoStereographicRaw} from \"./projection/stereographic.js\";\nexport {default as geoTransverseMercator, transverseMercatorRaw as geoTransverseMercatorRaw} from \"./projection/transverseMercator.js\";\nexport {default as geoRotation} from \"./rotation.js\";\nexport {default as geoStream} from \"./stream.js\";\nexport {default as geoTransform} from \"./transform.js\";\n","import {asin, atan2, cos, degrees, haversin, radians, sin, sqrt} from \"./math.js\";\n\nexport default function(a, b) {\n var x0 = a[0] * radians,\n y0 = a[1] * radians,\n x1 = b[0] * radians,\n y1 = b[1] * radians,\n cy0 = cos(y0),\n sy0 = sin(y0),\n cy1 = cos(y1),\n sy1 = sin(y1),\n kx0 = cy0 * cos(x0),\n ky0 = cy0 * sin(x0),\n kx1 = cy1 * cos(x1),\n ky1 = cy1 * sin(x1),\n d = 2 * asin(sqrt(haversin(y1 - y0) + cy0 * cy1 * haversin(x1 - x0))),\n k = sin(d);\n\n var interpolate = d ? function(t) {\n var B = sin(t *= d) / k,\n A = sin(d - t) / k,\n x = A * kx0 + B * kx1,\n y = A * ky0 + B * ky1,\n z = A * sy0 + B * sy1;\n return [\n atan2(y, x) * degrees,\n atan2(z, sqrt(x * x + y * y)) * degrees\n ];\n } : function() {\n return [x0 * degrees, y0 * degrees];\n };\n\n interpolate.distance = d;\n\n return interpolate;\n}\n","import {Adder} from \"d3-array\";\nimport {abs, atan2, cos, radians, sin, sqrt} from \"./math.js\";\nimport noop from \"./noop.js\";\nimport stream from \"./stream.js\";\n\nvar lengthSum,\n lambda0,\n sinPhi0,\n cosPhi0;\n\nvar lengthStream = {\n sphere: noop,\n point: noop,\n lineStart: lengthLineStart,\n lineEnd: noop,\n polygonStart: noop,\n polygonEnd: noop\n};\n\nfunction lengthLineStart() {\n lengthStream.point = lengthPointFirst;\n lengthStream.lineEnd = lengthLineEnd;\n}\n\nfunction lengthLineEnd() {\n lengthStream.point = lengthStream.lineEnd = noop;\n}\n\nfunction lengthPointFirst(lambda, phi) {\n lambda *= radians, phi *= radians;\n lambda0 = lambda, sinPhi0 = sin(phi), cosPhi0 = cos(phi);\n lengthStream.point = lengthPoint;\n}\n\nfunction lengthPoint(lambda, phi) {\n lambda *= radians, phi *= radians;\n var sinPhi = sin(phi),\n cosPhi = cos(phi),\n delta = abs(lambda - lambda0),\n cosDelta = cos(delta),\n sinDelta = sin(delta),\n x = cosPhi * sinDelta,\n y = cosPhi0 * sinPhi - sinPhi0 * cosPhi * cosDelta,\n z = sinPhi0 * sinPhi + cosPhi0 * cosPhi * cosDelta;\n lengthSum.add(atan2(sqrt(x * x + y * y), z));\n lambda0 = lambda, sinPhi0 = sinPhi, cosPhi0 = cosPhi;\n}\n\nexport default function(object) {\n lengthSum = new Adder();\n stream(object, lengthStream);\n return +lengthSum;\n}\n","export var epsilon = 1e-6;\nexport var epsilon2 = 1e-12;\nexport var pi = Math.PI;\nexport var halfPi = pi / 2;\nexport var quarterPi = pi / 4;\nexport var tau = pi * 2;\n\nexport var degrees = 180 / pi;\nexport var radians = pi / 180;\n\nexport var abs = Math.abs;\nexport var atan = Math.atan;\nexport var atan2 = Math.atan2;\nexport var cos = Math.cos;\nexport var ceil = Math.ceil;\nexport var exp = Math.exp;\nexport var floor = Math.floor;\nexport var hypot = Math.hypot;\nexport var log = Math.log;\nexport var pow = Math.pow;\nexport var sin = Math.sin;\nexport var sign = Math.sign || function(x) { return x > 0 ? 1 : x < 0 ? -1 : 0; };\nexport var sqrt = Math.sqrt;\nexport var tan = Math.tan;\n\nexport function acos(x) {\n return x > 1 ? 0 : x < -1 ? pi : Math.acos(x);\n}\n\nexport function asin(x) {\n return x > 1 ? halfPi : x < -1 ? -halfPi : Math.asin(x);\n}\n\nexport function haversin(x) {\n return (x = sin(x / 2)) * x;\n}\n","export default function noop() {}\n","import {Adder} from \"d3-array\";\nimport {abs} from \"../math.js\";\nimport noop from \"../noop.js\";\n\nvar areaSum = new Adder(),\n areaRingSum = new Adder(),\n x00,\n y00,\n x0,\n y0;\n\nvar areaStream = {\n point: noop,\n lineStart: noop,\n lineEnd: noop,\n polygonStart: function() {\n areaStream.lineStart = areaRingStart;\n areaStream.lineEnd = areaRingEnd;\n },\n polygonEnd: function() {\n areaStream.lineStart = areaStream.lineEnd = areaStream.point = noop;\n areaSum.add(abs(areaRingSum));\n areaRingSum = new Adder();\n },\n result: function() {\n var area = areaSum / 2;\n areaSum = new Adder();\n return area;\n }\n};\n\nfunction areaRingStart() {\n areaStream.point = areaPointFirst;\n}\n\nfunction areaPointFirst(x, y) {\n areaStream.point = areaPoint;\n x00 = x0 = x, y00 = y0 = y;\n}\n\nfunction areaPoint(x, y) {\n areaRingSum.add(y0 * x - x0 * y);\n x0 = x, y0 = y;\n}\n\nfunction areaRingEnd() {\n areaPoint(x00, y00);\n}\n\nexport default areaStream;\n","import noop from \"../noop.js\";\n\nvar x0 = Infinity,\n y0 = x0,\n x1 = -x0,\n y1 = x1;\n\nvar boundsStream = {\n point: boundsPoint,\n lineStart: noop,\n lineEnd: noop,\n polygonStart: noop,\n polygonEnd: noop,\n result: function() {\n var bounds = [[x0, y0], [x1, y1]];\n x1 = y1 = -(y0 = x0 = Infinity);\n return bounds;\n }\n};\n\nfunction boundsPoint(x, y) {\n if (x < x0) x0 = x;\n if (x > x1) x1 = x;\n if (y < y0) y0 = y;\n if (y > y1) y1 = y;\n}\n\nexport default boundsStream;\n","import {sqrt} from \"../math.js\";\n\n// TODO Enforce positive area for exterior, negative area for interior?\n\nvar X0 = 0,\n Y0 = 0,\n Z0 = 0,\n X1 = 0,\n Y1 = 0,\n Z1 = 0,\n X2 = 0,\n Y2 = 0,\n Z2 = 0,\n x00,\n y00,\n x0,\n y0;\n\nvar centroidStream = {\n point: centroidPoint,\n lineStart: centroidLineStart,\n lineEnd: centroidLineEnd,\n polygonStart: function() {\n centroidStream.lineStart = centroidRingStart;\n centroidStream.lineEnd = centroidRingEnd;\n },\n polygonEnd: function() {\n centroidStream.point = centroidPoint;\n centroidStream.lineStart = centroidLineStart;\n centroidStream.lineEnd = centroidLineEnd;\n },\n result: function() {\n var centroid = Z2 ? [X2 / Z2, Y2 / Z2]\n : Z1 ? [X1 / Z1, Y1 / Z1]\n : Z0 ? [X0 / Z0, Y0 / Z0]\n : [NaN, NaN];\n X0 = Y0 = Z0 =\n X1 = Y1 = Z1 =\n X2 = Y2 = Z2 = 0;\n return centroid;\n }\n};\n\nfunction centroidPoint(x, y) {\n X0 += x;\n Y0 += y;\n ++Z0;\n}\n\nfunction centroidLineStart() {\n centroidStream.point = centroidPointFirstLine;\n}\n\nfunction centroidPointFirstLine(x, y) {\n centroidStream.point = centroidPointLine;\n centroidPoint(x0 = x, y0 = y);\n}\n\nfunction centroidPointLine(x, y) {\n var dx = x - x0, dy = y - y0, z = sqrt(dx * dx + dy * dy);\n X1 += z * (x0 + x) / 2;\n Y1 += z * (y0 + y) / 2;\n Z1 += z;\n centroidPoint(x0 = x, y0 = y);\n}\n\nfunction centroidLineEnd() {\n centroidStream.point = centroidPoint;\n}\n\nfunction centroidRingStart() {\n centroidStream.point = centroidPointFirstRing;\n}\n\nfunction centroidRingEnd() {\n centroidPointRing(x00, y00);\n}\n\nfunction centroidPointFirstRing(x, y) {\n centroidStream.point = centroidPointRing;\n centroidPoint(x00 = x0 = x, y00 = y0 = y);\n}\n\nfunction centroidPointRing(x, y) {\n var dx = x - x0,\n dy = y - y0,\n z = sqrt(dx * dx + dy * dy);\n\n X1 += z * (x0 + x) / 2;\n Y1 += z * (y0 + y) / 2;\n Z1 += z;\n\n z = y0 * x - x0 * y;\n X2 += z * (x0 + x);\n Y2 += z * (y0 + y);\n Z2 += z * 3;\n centroidPoint(x0 = x, y0 = y);\n}\n\nexport default centroidStream;\n","import {tau} from \"../math.js\";\nimport noop from \"../noop.js\";\n\nexport default function PathContext(context) {\n this._context = context;\n}\n\nPathContext.prototype = {\n _radius: 4.5,\n pointRadius: function(_) {\n return this._radius = _, this;\n },\n polygonStart: function() {\n this._line = 0;\n },\n polygonEnd: function() {\n this._line = NaN;\n },\n lineStart: function() {\n this._point = 0;\n },\n lineEnd: function() {\n if (this._line === 0) this._context.closePath();\n this._point = NaN;\n },\n point: function(x, y) {\n switch (this._point) {\n case 0: {\n this._context.moveTo(x, y);\n this._point = 1;\n break;\n }\n case 1: {\n this._context.lineTo(x, y);\n break;\n }\n default: {\n this._context.moveTo(x + this._radius, y);\n this._context.arc(x, y, this._radius, 0, tau);\n break;\n }\n }\n },\n result: noop\n};\n","import identity from \"../identity.js\";\nimport stream from \"../stream.js\";\nimport pathArea from \"./area.js\";\nimport pathBounds from \"./bounds.js\";\nimport pathCentroid from \"./centroid.js\";\nimport PathContext from \"./context.js\";\nimport pathMeasure from \"./measure.js\";\nimport PathString from \"./string.js\";\n\nexport default function(projection, context) {\n let digits = 3,\n pointRadius = 4.5,\n projectionStream,\n contextStream;\n\n function path(object) {\n if (object) {\n if (typeof pointRadius === \"function\") contextStream.pointRadius(+pointRadius.apply(this, arguments));\n stream(object, projectionStream(contextStream));\n }\n return contextStream.result();\n }\n\n path.area = function(object) {\n stream(object, projectionStream(pathArea));\n return pathArea.result();\n };\n\n path.measure = function(object) {\n stream(object, projectionStream(pathMeasure));\n return pathMeasure.result();\n };\n\n path.bounds = function(object) {\n stream(object, projectionStream(pathBounds));\n return pathBounds.result();\n };\n\n path.centroid = function(object) {\n stream(object, projectionStream(pathCentroid));\n return pathCentroid.result();\n };\n\n path.projection = function(_) {\n if (!arguments.length) return projection;\n projectionStream = _ == null ? (projection = null, identity) : (projection = _).stream;\n return path;\n };\n\n path.context = function(_) {\n if (!arguments.length) return context;\n contextStream = _ == null ? (context = null, new PathString(digits)) : new PathContext(context = _);\n if (typeof pointRadius !== \"function\") contextStream.pointRadius(pointRadius);\n return path;\n };\n\n path.pointRadius = function(_) {\n if (!arguments.length) return pointRadius;\n pointRadius = typeof _ === \"function\" ? _ : (contextStream.pointRadius(+_), +_);\n return path;\n };\n\n path.digits = function(_) {\n if (!arguments.length) return digits;\n if (_ == null) digits = null;\n else {\n const d = Math.floor(_);\n if (!(d >= 0)) throw new RangeError(`invalid digits: ${_}`);\n digits = d;\n }\n if (context === null) contextStream = new PathString(digits);\n return path;\n };\n\n return path.projection(projection).digits(digits).context(context);\n}\n","import {Adder} from \"d3-array\";\nimport {sqrt} from \"../math.js\";\nimport noop from \"../noop.js\";\n\nvar lengthSum = new Adder(),\n lengthRing,\n x00,\n y00,\n x0,\n y0;\n\nvar lengthStream = {\n point: noop,\n lineStart: function() {\n lengthStream.point = lengthPointFirst;\n },\n lineEnd: function() {\n if (lengthRing) lengthPoint(x00, y00);\n lengthStream.point = noop;\n },\n polygonStart: function() {\n lengthRing = true;\n },\n polygonEnd: function() {\n lengthRing = null;\n },\n result: function() {\n var length = +lengthSum;\n lengthSum = new Adder();\n return length;\n }\n};\n\nfunction lengthPointFirst(x, y) {\n lengthStream.point = lengthPoint;\n x00 = x0 = x, y00 = y0 = y;\n}\n\nfunction lengthPoint(x, y) {\n x0 -= x, y0 -= y;\n lengthSum.add(sqrt(x0 * x0 + y0 * y0));\n x0 = x, y0 = y;\n}\n\nexport default lengthStream;\n","// Simple caching for constant-radius points.\nlet cacheDigits, cacheAppend, cacheRadius, cacheCircle;\n\nexport default class PathString {\n constructor(digits) {\n this._append = digits == null ? append : appendRound(digits);\n this._radius = 4.5;\n this._ = \"\";\n }\n pointRadius(_) {\n this._radius = +_;\n return this;\n }\n polygonStart() {\n this._line = 0;\n }\n polygonEnd() {\n this._line = NaN;\n }\n lineStart() {\n this._point = 0;\n }\n lineEnd() {\n if (this._line === 0) this._ += \"Z\";\n this._point = NaN;\n }\n point(x, y) {\n switch (this._point) {\n case 0: {\n this._append`M${x},${y}`;\n this._point = 1;\n break;\n }\n case 1: {\n this._append`L${x},${y}`;\n break;\n }\n default: {\n this._append`M${x},${y}`;\n if (this._radius !== cacheRadius || this._append !== cacheAppend) {\n const r = this._radius;\n const s = this._;\n this._ = \"\"; // stash the old string so we can cache the circle path fragment\n this._append`m0,${r}a${r},${r} 0 1,1 0,${-2 * r}a${r},${r} 0 1,1 0,${2 * r}z`;\n cacheRadius = r;\n cacheAppend = this._append;\n cacheCircle = this._;\n this._ = s;\n }\n this._ += cacheCircle;\n break;\n }\n }\n }\n result() {\n const result = this._;\n this._ = \"\";\n return result.length ? result : null;\n }\n}\n\nfunction append(strings) {\n let i = 1;\n this._ += strings[0];\n for (const j = strings.length; i < j; ++i) {\n this._ += arguments[i] + strings[i];\n }\n}\n\nfunction appendRound(digits) {\n const d = Math.floor(digits);\n if (!(d >= 0)) throw new RangeError(`invalid digits: ${digits}`);\n if (d > 15) return append;\n if (d !== cacheDigits) {\n const k = 10 ** d;\n cacheDigits = d;\n cacheAppend = function append(strings) {\n let i = 1;\n this._ += strings[0];\n for (const j = strings.length; i < j; ++i) {\n this._ += Math.round(arguments[i] * k) / k + strings[i];\n }\n };\n }\n return cacheAppend;\n}\n","import {abs, epsilon} from \"./math.js\";\n\nexport default function(a, b) {\n return abs(a[0] - b[0]) < epsilon && abs(a[1] - b[1]) < epsilon;\n}\n","import {Adder} from \"d3-array\";\nimport {cartesian, cartesianCross, cartesianNormalizeInPlace} from \"./cartesian.js\";\nimport {abs, asin, atan2, cos, epsilon, epsilon2, halfPi, pi, quarterPi, sign, sin, tau} from \"./math.js\";\n\nfunction longitude(point) {\n return abs(point[0]) <= pi ? point[0] : sign(point[0]) * ((abs(point[0]) + pi) % tau - pi);\n}\n\nexport default function(polygon, point) {\n var lambda = longitude(point),\n phi = point[1],\n sinPhi = sin(phi),\n normal = [sin(lambda), -cos(lambda), 0],\n angle = 0,\n winding = 0;\n\n var sum = new Adder();\n\n if (sinPhi === 1) phi = halfPi + epsilon;\n else if (sinPhi === -1) phi = -halfPi - epsilon;\n\n for (var i = 0, n = polygon.length; i < n; ++i) {\n if (!(m = (ring = polygon[i]).length)) continue;\n var ring,\n m,\n point0 = ring[m - 1],\n lambda0 = longitude(point0),\n phi0 = point0[1] / 2 + quarterPi,\n sinPhi0 = sin(phi0),\n cosPhi0 = cos(phi0);\n\n for (var j = 0; j < m; ++j, lambda0 = lambda1, sinPhi0 = sinPhi1, cosPhi0 = cosPhi1, point0 = point1) {\n var point1 = ring[j],\n lambda1 = longitude(point1),\n phi1 = point1[1] / 2 + quarterPi,\n sinPhi1 = sin(phi1),\n cosPhi1 = cos(phi1),\n delta = lambda1 - lambda0,\n sign = delta >= 0 ? 1 : -1,\n absDelta = sign * delta,\n antimeridian = absDelta > pi,\n k = sinPhi0 * sinPhi1;\n\n sum.add(atan2(k * sign * sin(absDelta), cosPhi0 * cosPhi1 + k * cos(absDelta)));\n angle += antimeridian ? delta + sign * tau : delta;\n\n // Are the longitudes either side of the point’s meridian (lambda),\n // and are the latitudes smaller than the parallel (phi)?\n if (antimeridian ^ lambda0 >= lambda ^ lambda1 >= lambda) {\n var arc = cartesianCross(cartesian(point0), cartesian(point1));\n cartesianNormalizeInPlace(arc);\n var intersection = cartesianCross(normal, arc);\n cartesianNormalizeInPlace(intersection);\n var phiArc = (antimeridian ^ delta >= 0 ? -1 : 1) * asin(intersection[2]);\n if (phi > phiArc || phi === phiArc && (arc[0] || arc[1])) {\n winding += antimeridian ^ delta >= 0 ? 1 : -1;\n }\n }\n }\n }\n\n // First, determine whether the South pole is inside or outside:\n //\n // It is inside if:\n // * the polygon winds around it in a clockwise direction.\n // * the polygon does not (cumulatively) wind around it, but has a negative\n // (counter-clockwise) area.\n //\n // Second, count the (signed) number of times a segment crosses a lambda\n // from the point to the South pole. If it is zero, then the point is the\n // same side as the South pole.\n\n return (angle < -epsilon || angle < epsilon && sum < -epsilon2) ^ (winding & 1);\n}\n","import conicEqualArea from \"./conicEqualArea.js\";\n\nexport default function() {\n return conicEqualArea()\n .parallels([29.5, 45.5])\n .scale(1070)\n .translate([480, 250])\n .rotate([96, 0])\n .center([-0.6, 38.7]);\n}\n","import {epsilon} from \"../math.js\";\nimport albers from \"./albers.js\";\nimport conicEqualArea from \"./conicEqualArea.js\";\nimport {fitExtent, fitSize, fitWidth, fitHeight} from \"./fit.js\";\n\n// The projections must have mutually exclusive clip regions on the sphere,\n// as this will avoid emitting interleaving lines and polygons.\nfunction multiplex(streams) {\n var n = streams.length;\n return {\n point: function(x, y) { var i = -1; while (++i < n) streams[i].point(x, y); },\n sphere: function() { var i = -1; while (++i < n) streams[i].sphere(); },\n lineStart: function() { var i = -1; while (++i < n) streams[i].lineStart(); },\n lineEnd: function() { var i = -1; while (++i < n) streams[i].lineEnd(); },\n polygonStart: function() { var i = -1; while (++i < n) streams[i].polygonStart(); },\n polygonEnd: function() { var i = -1; while (++i < n) streams[i].polygonEnd(); }\n };\n}\n\n// A composite projection for the United States, configured by default for\n// 960×500. The projection also works quite well at 960×600 if you change the\n// scale to 1285 and adjust the translate accordingly. The set of standard\n// parallels for each region comes from USGS, which is published here:\n// http://egsc.usgs.gov/isb/pubs/MapProjections/projections.html#albers\nexport default function() {\n var cache,\n cacheStream,\n lower48 = albers(), lower48Point,\n alaska = conicEqualArea().rotate([154, 0]).center([-2, 58.5]).parallels([55, 65]), alaskaPoint, // EPSG:3338\n hawaii = conicEqualArea().rotate([157, 0]).center([-3, 19.9]).parallels([8, 18]), hawaiiPoint, // ESRI:102007\n point, pointStream = {point: function(x, y) { point = [x, y]; }};\n\n function albersUsa(coordinates) {\n var x = coordinates[0], y = coordinates[1];\n return point = null,\n (lower48Point.point(x, y), point)\n || (alaskaPoint.point(x, y), point)\n || (hawaiiPoint.point(x, y), point);\n }\n\n albersUsa.invert = function(coordinates) {\n var k = lower48.scale(),\n t = lower48.translate(),\n x = (coordinates[0] - t[0]) / k,\n y = (coordinates[1] - t[1]) / k;\n return (y >= 0.120 && y < 0.234 && x >= -0.425 && x < -0.214 ? alaska\n : y >= 0.166 && y < 0.234 && x >= -0.214 && x < -0.115 ? hawaii\n : lower48).invert(coordinates);\n };\n\n albersUsa.stream = function(stream) {\n return cache && cacheStream === stream ? cache : cache = multiplex([lower48.stream(cacheStream = stream), alaska.stream(stream), hawaii.stream(stream)]);\n };\n\n albersUsa.precision = function(_) {\n if (!arguments.length) return lower48.precision();\n lower48.precision(_), alaska.precision(_), hawaii.precision(_);\n return reset();\n };\n\n albersUsa.scale = function(_) {\n if (!arguments.length) return lower48.scale();\n lower48.scale(_), alaska.scale(_ * 0.35), hawaii.scale(_);\n return albersUsa.translate(lower48.translate());\n };\n\n albersUsa.translate = function(_) {\n if (!arguments.length) return lower48.translate();\n var k = lower48.scale(), x = +_[0], y = +_[1];\n\n lower48Point = lower48\n .translate(_)\n .clipExtent([[x - 0.455 * k, y - 0.238 * k], [x + 0.455 * k, y + 0.238 * k]])\n .stream(pointStream);\n\n alaskaPoint = alaska\n .translate([x - 0.307 * k, y + 0.201 * k])\n .clipExtent([[x - 0.425 * k + epsilon, y + 0.120 * k + epsilon], [x - 0.214 * k - epsilon, y + 0.234 * k - epsilon]])\n .stream(pointStream);\n\n hawaiiPoint = hawaii\n .translate([x - 0.205 * k, y + 0.212 * k])\n .clipExtent([[x - 0.214 * k + epsilon, y + 0.166 * k + epsilon], [x - 0.115 * k - epsilon, y + 0.234 * k - epsilon]])\n .stream(pointStream);\n\n return reset();\n };\n\n albersUsa.fitExtent = function(extent, object) {\n return fitExtent(albersUsa, extent, object);\n };\n\n albersUsa.fitSize = function(size, object) {\n return fitSize(albersUsa, size, object);\n };\n\n albersUsa.fitWidth = function(width, object) {\n return fitWidth(albersUsa, width, object);\n };\n\n albersUsa.fitHeight = function(height, object) {\n return fitHeight(albersUsa, height, object);\n };\n\n function reset() {\n cache = cacheStream = null;\n return albersUsa;\n }\n\n return albersUsa.scale(1070);\n}\n","import {asin, atan2, cos, sin, sqrt} from \"../math.js\";\n\nexport function azimuthalRaw(scale) {\n return function(x, y) {\n var cx = cos(x),\n cy = cos(y),\n k = scale(cx * cy);\n if (k === Infinity) return [2, 0];\n return [\n k * cy * sin(x),\n k * sin(y)\n ];\n }\n}\n\nexport function azimuthalInvert(angle) {\n return function(x, y) {\n var z = sqrt(x * x + y * y),\n c = angle(z),\n sc = sin(c),\n cc = cos(c);\n return [\n atan2(x * sc, z * cc),\n asin(z && y * sc / z)\n ];\n }\n}\n","import {asin, sqrt} from \"../math.js\";\nimport {azimuthalRaw, azimuthalInvert} from \"./azimuthal.js\";\nimport projection from \"./index.js\";\n\nexport var azimuthalEqualAreaRaw = azimuthalRaw(function(cxcy) {\n return sqrt(2 / (1 + cxcy));\n});\n\nazimuthalEqualAreaRaw.invert = azimuthalInvert(function(z) {\n return 2 * asin(z / 2);\n});\n\nexport default function() {\n return projection(azimuthalEqualAreaRaw)\n .scale(124.75)\n .clipAngle(180 - 1e-3);\n}\n","import {acos, sin} from \"../math.js\";\nimport {azimuthalRaw, azimuthalInvert} from \"./azimuthal.js\";\nimport projection from \"./index.js\";\n\nexport var azimuthalEquidistantRaw = azimuthalRaw(function(c) {\n return (c = acos(c)) && c / sin(c);\n});\n\nazimuthalEquidistantRaw.invert = azimuthalInvert(function(z) {\n return z;\n});\n\nexport default function() {\n return projection(azimuthalEquidistantRaw)\n .scale(79.4188)\n .clipAngle(180 - 1e-3);\n}\n","import {degrees, pi, radians} from \"../math.js\";\nimport {projectionMutator} from \"./index.js\";\n\nexport function conicProjection(projectAt) {\n var phi0 = 0,\n phi1 = pi / 3,\n m = projectionMutator(projectAt),\n p = m(phi0, phi1);\n\n p.parallels = function(_) {\n return arguments.length ? m(phi0 = _[0] * radians, phi1 = _[1] * radians) : [phi0 * degrees, phi1 * degrees];\n };\n\n return p;\n}\n","import {abs, atan, atan2, cos, epsilon, halfPi, log, pi, pow, sign, sin, sqrt, tan} from \"../math.js\";\nimport {conicProjection} from \"./conic.js\";\nimport {mercatorRaw} from \"./mercator.js\";\n\nfunction tany(y) {\n return tan((halfPi + y) / 2);\n}\n\nexport function conicConformalRaw(y0, y1) {\n var cy0 = cos(y0),\n n = y0 === y1 ? sin(y0) : log(cy0 / cos(y1)) / log(tany(y1) / tany(y0)),\n f = cy0 * pow(tany(y0), n) / n;\n\n if (!n) return mercatorRaw;\n\n function project(x, y) {\n if (f > 0) { if (y < -halfPi + epsilon) y = -halfPi + epsilon; }\n else { if (y > halfPi - epsilon) y = halfPi - epsilon; }\n var r = f / pow(tany(y), n);\n return [r * sin(n * x), f - r * cos(n * x)];\n }\n\n project.invert = function(x, y) {\n var fy = f - y, r = sign(n) * sqrt(x * x + fy * fy),\n l = atan2(x, abs(fy)) * sign(fy);\n if (fy * n < 0)\n l -= pi * sign(x) * sign(fy);\n return [l / n, 2 * atan(pow(f / r, 1 / n)) - halfPi];\n };\n\n return project;\n}\n\nexport default function() {\n return conicProjection(conicConformalRaw)\n .scale(109.5)\n .parallels([30, 30]);\n}\n","import {abs, asin, atan2, cos, epsilon, pi, sign, sin, sqrt} from \"../math.js\";\nimport {conicProjection} from \"./conic.js\";\nimport {cylindricalEqualAreaRaw} from \"./cylindricalEqualArea.js\";\n\nexport function conicEqualAreaRaw(y0, y1) {\n var sy0 = sin(y0), n = (sy0 + sin(y1)) / 2;\n\n // Are the parallels symmetrical around the Equator?\n if (abs(n) < epsilon) return cylindricalEqualAreaRaw(y0);\n\n var c = 1 + sy0 * (2 * n - sy0), r0 = sqrt(c) / n;\n\n function project(x, y) {\n var r = sqrt(c - 2 * n * sin(y)) / n;\n return [r * sin(x *= n), r0 - r * cos(x)];\n }\n\n project.invert = function(x, y) {\n var r0y = r0 - y,\n l = atan2(x, abs(r0y)) * sign(r0y);\n if (r0y * n < 0)\n l -= pi * sign(x) * sign(r0y);\n return [l / n, asin((c - (x * x + r0y * r0y) * n * n) / (2 * n))];\n };\n\n return project;\n}\n\nexport default function() {\n return conicProjection(conicEqualAreaRaw)\n .scale(155.424)\n .center([0, 33.6442]);\n}\n","import {abs, atan2, cos, epsilon, pi, sign, sin, sqrt} from \"../math.js\";\nimport {conicProjection} from \"./conic.js\";\nimport {equirectangularRaw} from \"./equirectangular.js\";\n\nexport function conicEquidistantRaw(y0, y1) {\n var cy0 = cos(y0),\n n = y0 === y1 ? sin(y0) : (cy0 - cos(y1)) / (y1 - y0),\n g = cy0 / n + y0;\n\n if (abs(n) < epsilon) return equirectangularRaw;\n\n function project(x, y) {\n var gy = g - y, nx = n * x;\n return [gy * sin(nx), g - gy * cos(nx)];\n }\n\n project.invert = function(x, y) {\n var gy = g - y,\n l = atan2(x, abs(gy)) * sign(gy);\n if (gy * n < 0)\n l -= pi * sign(x) * sign(gy);\n return [l / n, g - sign(n) * sqrt(x * x + gy * gy)];\n };\n\n return project;\n}\n\nexport default function() {\n return conicProjection(conicEquidistantRaw)\n .scale(131.154)\n .center([0, 13.9389]);\n}\n","import {asin, cos, sin} from \"../math.js\";\n\nexport function cylindricalEqualAreaRaw(phi0) {\n var cosPhi0 = cos(phi0);\n\n function forward(lambda, phi) {\n return [lambda * cosPhi0, sin(phi) / cosPhi0];\n }\n\n forward.invert = function(x, y) {\n return [x / cosPhi0, asin(y * cosPhi0)];\n };\n\n return forward;\n}\n","import projection from \"./index.js\";\nimport {abs, asin, cos, epsilon2, sin, sqrt} from \"../math.js\";\n\nvar A1 = 1.340264,\n A2 = -0.081106,\n A3 = 0.000893,\n A4 = 0.003796,\n M = sqrt(3) / 2,\n iterations = 12;\n\nexport function equalEarthRaw(lambda, phi) {\n var l = asin(M * sin(phi)), l2 = l * l, l6 = l2 * l2 * l2;\n return [\n lambda * cos(l) / (M * (A1 + 3 * A2 * l2 + l6 * (7 * A3 + 9 * A4 * l2))),\n l * (A1 + A2 * l2 + l6 * (A3 + A4 * l2))\n ];\n}\n\nequalEarthRaw.invert = function(x, y) {\n var l = y, l2 = l * l, l6 = l2 * l2 * l2;\n for (var i = 0, delta, fy, fpy; i < iterations; ++i) {\n fy = l * (A1 + A2 * l2 + l6 * (A3 + A4 * l2)) - y;\n fpy = A1 + 3 * A2 * l2 + l6 * (7 * A3 + 9 * A4 * l2);\n l -= delta = fy / fpy, l2 = l * l, l6 = l2 * l2 * l2;\n if (abs(delta) < epsilon2) break;\n }\n return [\n M * x * (A1 + 3 * A2 * l2 + l6 * (7 * A3 + 9 * A4 * l2)) / cos(l),\n asin(sin(l) / M)\n ];\n};\n\nexport default function() {\n return projection(equalEarthRaw)\n .scale(177.158);\n}\n","import projection from \"./index.js\";\n\nexport function equirectangularRaw(lambda, phi) {\n return [lambda, phi];\n}\n\nequirectangularRaw.invert = equirectangularRaw;\n\nexport default function() {\n return projection(equirectangularRaw)\n .scale(152.63);\n}\n","import {default as geoStream} from \"../stream.js\";\nimport boundsStream from \"../path/bounds.js\";\n\nfunction fit(projection, fitBounds, object) {\n var clip = projection.clipExtent && projection.clipExtent();\n projection.scale(150).translate([0, 0]);\n if (clip != null) projection.clipExtent(null);\n geoStream(object, projection.stream(boundsStream));\n fitBounds(boundsStream.result());\n if (clip != null) projection.clipExtent(clip);\n return projection;\n}\n\nexport function fitExtent(projection, extent, object) {\n return fit(projection, function(b) {\n var w = extent[1][0] - extent[0][0],\n h = extent[1][1] - extent[0][1],\n k = Math.min(w / (b[1][0] - b[0][0]), h / (b[1][1] - b[0][1])),\n x = +extent[0][0] + (w - k * (b[1][0] + b[0][0])) / 2,\n y = +extent[0][1] + (h - k * (b[1][1] + b[0][1])) / 2;\n projection.scale(150 * k).translate([x, y]);\n }, object);\n}\n\nexport function fitSize(projection, size, object) {\n return fitExtent(projection, [[0, 0], size], object);\n}\n\nexport function fitWidth(projection, width, object) {\n return fit(projection, function(b) {\n var w = +width,\n k = w / (b[1][0] - b[0][0]),\n x = (w - k * (b[1][0] + b[0][0])) / 2,\n y = -k * b[0][1];\n projection.scale(150 * k).translate([x, y]);\n }, object);\n}\n\nexport function fitHeight(projection, height, object) {\n return fit(projection, function(b) {\n var h = +height,\n k = h / (b[1][1] - b[0][1]),\n x = -k * b[0][0],\n y = (h - k * (b[1][1] + b[0][1])) / 2;\n projection.scale(150 * k).translate([x, y]);\n }, object);\n}\n","import {atan, cos, sin} from \"../math.js\";\nimport {azimuthalInvert} from \"./azimuthal.js\";\nimport projection from \"./index.js\";\n\nexport function gnomonicRaw(x, y) {\n var cy = cos(y), k = cos(x) * cy;\n return [cy * sin(x) / k, sin(y) / k];\n}\n\ngnomonicRaw.invert = azimuthalInvert(atan);\n\nexport default function() {\n return projection(gnomonicRaw)\n .scale(144.049)\n .clipAngle(60);\n}\n","import clipRectangle from \"../clip/rectangle.js\";\nimport identity from \"../identity.js\";\nimport {transformer} from \"../transform.js\";\nimport {fitExtent, fitSize, fitWidth, fitHeight} from \"./fit.js\";\nimport {cos, degrees, radians, sin} from \"../math.js\";\n\nexport default function() {\n var k = 1, tx = 0, ty = 0, sx = 1, sy = 1, // scale, translate and reflect\n alpha = 0, ca, sa, // angle\n x0 = null, y0, x1, y1, // clip extent\n kx = 1, ky = 1,\n transform = transformer({\n point: function(x, y) {\n var p = projection([x, y])\n this.stream.point(p[0], p[1]);\n }\n }),\n postclip = identity,\n cache,\n cacheStream;\n\n function reset() {\n kx = k * sx;\n ky = k * sy;\n cache = cacheStream = null;\n return projection;\n }\n\n function projection (p) {\n var x = p[0] * kx, y = p[1] * ky;\n if (alpha) {\n var t = y * ca - x * sa;\n x = x * ca + y * sa;\n y = t;\n } \n return [x + tx, y + ty];\n }\n projection.invert = function(p) {\n var x = p[0] - tx, y = p[1] - ty;\n if (alpha) {\n var t = y * ca + x * sa;\n x = x * ca - y * sa;\n y = t;\n }\n return [x / kx, y / ky];\n };\n projection.stream = function(stream) {\n return cache && cacheStream === stream ? cache : cache = transform(postclip(cacheStream = stream));\n };\n projection.postclip = function(_) {\n return arguments.length ? (postclip = _, x0 = y0 = x1 = y1 = null, reset()) : postclip;\n };\n projection.clipExtent = function(_) {\n return arguments.length ? (postclip = _ == null ? (x0 = y0 = x1 = y1 = null, identity) : clipRectangle(x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1]), reset()) : x0 == null ? null : [[x0, y0], [x1, y1]];\n };\n projection.scale = function(_) {\n return arguments.length ? (k = +_, reset()) : k;\n };\n projection.translate = function(_) {\n return arguments.length ? (tx = +_[0], ty = +_[1], reset()) : [tx, ty];\n }\n projection.angle = function(_) {\n return arguments.length ? (alpha = _ % 360 * radians, sa = sin(alpha), ca = cos(alpha), reset()) : alpha * degrees;\n };\n projection.reflectX = function(_) {\n return arguments.length ? (sx = _ ? -1 : 1, reset()) : sx < 0;\n };\n projection.reflectY = function(_) {\n return arguments.length ? (sy = _ ? -1 : 1, reset()) : sy < 0;\n };\n projection.fitExtent = function(extent, object) {\n return fitExtent(projection, extent, object);\n };\n projection.fitSize = function(size, object) {\n return fitSize(projection, size, object);\n };\n projection.fitWidth = function(width, object) {\n return fitWidth(projection, width, object);\n };\n projection.fitHeight = function(height, object) {\n return fitHeight(projection, height, object);\n };\n\n return projection;\n}\n","import clipAntimeridian from \"../clip/antimeridian.js\";\nimport clipCircle from \"../clip/circle.js\";\nimport clipRectangle from \"../clip/rectangle.js\";\nimport compose from \"../compose.js\";\nimport identity from \"../identity.js\";\nimport {cos, degrees, radians, sin, sqrt} from \"../math.js\";\nimport {rotateRadians} from \"../rotation.js\";\nimport {transformer} from \"../transform.js\";\nimport {fitExtent, fitSize, fitWidth, fitHeight} from \"./fit.js\";\nimport resample from \"./resample.js\";\n\nvar transformRadians = transformer({\n point: function(x, y) {\n this.stream.point(x * radians, y * radians);\n }\n});\n\nfunction transformRotate(rotate) {\n return transformer({\n point: function(x, y) {\n var r = rotate(x, y);\n return this.stream.point(r[0], r[1]);\n }\n });\n}\n\nfunction scaleTranslate(k, dx, dy, sx, sy) {\n function transform(x, y) {\n x *= sx; y *= sy;\n return [dx + k * x, dy - k * y];\n }\n transform.invert = function(x, y) {\n return [(x - dx) / k * sx, (dy - y) / k * sy];\n };\n return transform;\n}\n\nfunction scaleTranslateRotate(k, dx, dy, sx, sy, alpha) {\n if (!alpha) return scaleTranslate(k, dx, dy, sx, sy);\n var cosAlpha = cos(alpha),\n sinAlpha = sin(alpha),\n a = cosAlpha * k,\n b = sinAlpha * k,\n ai = cosAlpha / k,\n bi = sinAlpha / k,\n ci = (sinAlpha * dy - cosAlpha * dx) / k,\n fi = (sinAlpha * dx + cosAlpha * dy) / k;\n function transform(x, y) {\n x *= sx; y *= sy;\n return [a * x - b * y + dx, dy - b * x - a * y];\n }\n transform.invert = function(x, y) {\n return [sx * (ai * x - bi * y + ci), sy * (fi - bi * x - ai * y)];\n };\n return transform;\n}\n\nexport default function projection(project) {\n return projectionMutator(function() { return project; })();\n}\n\nexport function projectionMutator(projectAt) {\n var project,\n k = 150, // scale\n x = 480, y = 250, // translate\n lambda = 0, phi = 0, // center\n deltaLambda = 0, deltaPhi = 0, deltaGamma = 0, rotate, // pre-rotate\n alpha = 0, // post-rotate angle\n sx = 1, // reflectX\n sy = 1, // reflectX\n theta = null, preclip = clipAntimeridian, // pre-clip angle\n x0 = null, y0, x1, y1, postclip = identity, // post-clip extent\n delta2 = 0.5, // precision\n projectResample,\n projectTransform,\n projectRotateTransform,\n cache,\n cacheStream;\n\n function projection(point) {\n return projectRotateTransform(point[0] * radians, point[1] * radians);\n }\n\n function invert(point) {\n point = projectRotateTransform.invert(point[0], point[1]);\n return point && [point[0] * degrees, point[1] * degrees];\n }\n\n projection.stream = function(stream) {\n return cache && cacheStream === stream ? cache : cache = transformRadians(transformRotate(rotate)(preclip(projectResample(postclip(cacheStream = stream)))));\n };\n\n projection.preclip = function(_) {\n return arguments.length ? (preclip = _, theta = undefined, reset()) : preclip;\n };\n\n projection.postclip = function(_) {\n return arguments.length ? (postclip = _, x0 = y0 = x1 = y1 = null, reset()) : postclip;\n };\n\n projection.clipAngle = function(_) {\n return arguments.length ? (preclip = +_ ? clipCircle(theta = _ * radians) : (theta = null, clipAntimeridian), reset()) : theta * degrees;\n };\n\n projection.clipExtent = function(_) {\n return arguments.length ? (postclip = _ == null ? (x0 = y0 = x1 = y1 = null, identity) : clipRectangle(x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1]), reset()) : x0 == null ? null : [[x0, y0], [x1, y1]];\n };\n\n projection.scale = function(_) {\n return arguments.length ? (k = +_, recenter()) : k;\n };\n\n projection.translate = function(_) {\n return arguments.length ? (x = +_[0], y = +_[1], recenter()) : [x, y];\n };\n\n projection.center = function(_) {\n return arguments.length ? (lambda = _[0] % 360 * radians, phi = _[1] % 360 * radians, recenter()) : [lambda * degrees, phi * degrees];\n };\n\n projection.rotate = function(_) {\n return arguments.length ? (deltaLambda = _[0] % 360 * radians, deltaPhi = _[1] % 360 * radians, deltaGamma = _.length > 2 ? _[2] % 360 * radians : 0, recenter()) : [deltaLambda * degrees, deltaPhi * degrees, deltaGamma * degrees];\n };\n\n projection.angle = function(_) {\n return arguments.length ? (alpha = _ % 360 * radians, recenter()) : alpha * degrees;\n };\n\n projection.reflectX = function(_) {\n return arguments.length ? (sx = _ ? -1 : 1, recenter()) : sx < 0;\n };\n\n projection.reflectY = function(_) {\n return arguments.length ? (sy = _ ? -1 : 1, recenter()) : sy < 0;\n };\n\n projection.precision = function(_) {\n return arguments.length ? (projectResample = resample(projectTransform, delta2 = _ * _), reset()) : sqrt(delta2);\n };\n\n projection.fitExtent = function(extent, object) {\n return fitExtent(projection, extent, object);\n };\n\n projection.fitSize = function(size, object) {\n return fitSize(projection, size, object);\n };\n\n projection.fitWidth = function(width, object) {\n return fitWidth(projection, width, object);\n };\n\n projection.fitHeight = function(height, object) {\n return fitHeight(projection, height, object);\n };\n\n function recenter() {\n var center = scaleTranslateRotate(k, 0, 0, sx, sy, alpha).apply(null, project(lambda, phi)),\n transform = scaleTranslateRotate(k, x - center[0], y - center[1], sx, sy, alpha);\n rotate = rotateRadians(deltaLambda, deltaPhi, deltaGamma);\n projectTransform = compose(project, transform);\n projectRotateTransform = compose(rotate, projectTransform);\n projectResample = resample(projectTransform, delta2);\n return reset();\n }\n\n function reset() {\n cache = cacheStream = null;\n return projection;\n }\n\n return function() {\n project = projectAt.apply(this, arguments);\n projection.invert = project.invert && invert;\n return recenter();\n };\n}\n","import {atan, exp, halfPi, log, pi, tan, tau} from \"../math.js\";\nimport rotation from \"../rotation.js\";\nimport projection from \"./index.js\";\n\nexport function mercatorRaw(lambda, phi) {\n return [lambda, log(tan((halfPi + phi) / 2))];\n}\n\nmercatorRaw.invert = function(x, y) {\n return [x, 2 * atan(exp(y)) - halfPi];\n};\n\nexport default function() {\n return mercatorProjection(mercatorRaw)\n .scale(961 / tau);\n}\n\nexport function mercatorProjection(project) {\n var m = projection(project),\n center = m.center,\n scale = m.scale,\n translate = m.translate,\n clipExtent = m.clipExtent,\n x0 = null, y0, x1, y1; // clip extent\n\n m.scale = function(_) {\n return arguments.length ? (scale(_), reclip()) : scale();\n };\n\n m.translate = function(_) {\n return arguments.length ? (translate(_), reclip()) : translate();\n };\n\n m.center = function(_) {\n return arguments.length ? (center(_), reclip()) : center();\n };\n\n m.clipExtent = function(_) {\n return arguments.length ? ((_ == null ? x0 = y0 = x1 = y1 = null : (x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1])), reclip()) : x0 == null ? null : [[x0, y0], [x1, y1]];\n };\n\n function reclip() {\n var k = pi * scale(),\n t = m(rotation(m.rotate()).invert([0, 0]));\n return clipExtent(x0 == null\n ? [[t[0] - k, t[1] - k], [t[0] + k, t[1] + k]] : project === mercatorRaw\n ? [[Math.max(t[0] - k, x0), y0], [Math.min(t[0] + k, x1), y1]]\n : [[x0, Math.max(t[1] - k, y0)], [x1, Math.min(t[1] + k, y1)]]);\n }\n\n return reclip();\n}\n","import projection from \"./index.js\";\nimport {abs, epsilon} from \"../math.js\";\n\nexport function naturalEarth1Raw(lambda, phi) {\n var phi2 = phi * phi, phi4 = phi2 * phi2;\n return [\n lambda * (0.8707 - 0.131979 * phi2 + phi4 * (-0.013791 + phi4 * (0.003971 * phi2 - 0.001529 * phi4))),\n phi * (1.007226 + phi2 * (0.015085 + phi4 * (-0.044475 + 0.028874 * phi2 - 0.005916 * phi4)))\n ];\n}\n\nnaturalEarth1Raw.invert = function(x, y) {\n var phi = y, i = 25, delta;\n do {\n var phi2 = phi * phi, phi4 = phi2 * phi2;\n phi -= delta = (phi * (1.007226 + phi2 * (0.015085 + phi4 * (-0.044475 + 0.028874 * phi2 - 0.005916 * phi4))) - y) /\n (1.007226 + phi2 * (0.015085 * 3 + phi4 * (-0.044475 * 7 + 0.028874 * 9 * phi2 - 0.005916 * 11 * phi4)));\n } while (abs(delta) > epsilon && --i > 0);\n return [\n x / (0.8707 + (phi2 = phi * phi) * (-0.131979 + phi2 * (-0.013791 + phi2 * phi2 * phi2 * (0.003971 - 0.001529 * phi2)))),\n phi\n ];\n};\n\nexport default function() {\n return projection(naturalEarth1Raw)\n .scale(175.295);\n}\n","import {asin, cos, epsilon, sin} from \"../math.js\";\nimport {azimuthalInvert} from \"./azimuthal.js\";\nimport projection from \"./index.js\";\n\nexport function orthographicRaw(x, y) {\n return [cos(y) * sin(x), sin(y)];\n}\n\northographicRaw.invert = azimuthalInvert(asin);\n\nexport default function() {\n return projection(orthographicRaw)\n .scale(249.5)\n .clipAngle(90 + epsilon);\n}\n","import {cartesian} from \"../cartesian.js\";\nimport {abs, asin, atan2, cos, epsilon, radians, sqrt} from \"../math.js\";\nimport {transformer} from \"../transform.js\";\n\nvar maxDepth = 16, // maximum depth of subdivision\n cosMinDistance = cos(30 * radians); // cos(minimum angular distance)\n\nexport default function(project, delta2) {\n return +delta2 ? resample(project, delta2) : resampleNone(project);\n}\n\nfunction resampleNone(project) {\n return transformer({\n point: function(x, y) {\n x = project(x, y);\n this.stream.point(x[0], x[1]);\n }\n });\n}\n\nfunction resample(project, delta2) {\n\n function resampleLineTo(x0, y0, lambda0, a0, b0, c0, x1, y1, lambda1, a1, b1, c1, depth, stream) {\n var dx = x1 - x0,\n dy = y1 - y0,\n d2 = dx * dx + dy * dy;\n if (d2 > 4 * delta2 && depth--) {\n var a = a0 + a1,\n b = b0 + b1,\n c = c0 + c1,\n m = sqrt(a * a + b * b + c * c),\n phi2 = asin(c /= m),\n lambda2 = abs(abs(c) - 1) < epsilon || abs(lambda0 - lambda1) < epsilon ? (lambda0 + lambda1) / 2 : atan2(b, a),\n p = project(lambda2, phi2),\n x2 = p[0],\n y2 = p[1],\n dx2 = x2 - x0,\n dy2 = y2 - y0,\n dz = dy * dx2 - dx * dy2;\n if (dz * dz / d2 > delta2 // perpendicular projected distance\n || abs((dx * dx2 + dy * dy2) / d2 - 0.5) > 0.3 // midpoint close to an end\n || a0 * a1 + b0 * b1 + c0 * c1 < cosMinDistance) { // angular distance\n resampleLineTo(x0, y0, lambda0, a0, b0, c0, x2, y2, lambda2, a /= m, b /= m, c, depth, stream);\n stream.point(x2, y2);\n resampleLineTo(x2, y2, lambda2, a, b, c, x1, y1, lambda1, a1, b1, c1, depth, stream);\n }\n }\n }\n return function(stream) {\n var lambda00, x00, y00, a00, b00, c00, // first point\n lambda0, x0, y0, a0, b0, c0; // previous point\n\n var resampleStream = {\n point: point,\n lineStart: lineStart,\n lineEnd: lineEnd,\n polygonStart: function() { stream.polygonStart(); resampleStream.lineStart = ringStart; },\n polygonEnd: function() { stream.polygonEnd(); resampleStream.lineStart = lineStart; }\n };\n\n function point(x, y) {\n x = project(x, y);\n stream.point(x[0], x[1]);\n }\n\n function lineStart() {\n x0 = NaN;\n resampleStream.point = linePoint;\n stream.lineStart();\n }\n\n function linePoint(lambda, phi) {\n var c = cartesian([lambda, phi]), p = project(lambda, phi);\n resampleLineTo(x0, y0, lambda0, a0, b0, c0, x0 = p[0], y0 = p[1], lambda0 = lambda, a0 = c[0], b0 = c[1], c0 = c[2], maxDepth, stream);\n stream.point(x0, y0);\n }\n\n function lineEnd() {\n resampleStream.point = point;\n stream.lineEnd();\n }\n\n function ringStart() {\n lineStart();\n resampleStream.point = ringPoint;\n resampleStream.lineEnd = ringEnd;\n }\n\n function ringPoint(lambda, phi) {\n linePoint(lambda00 = lambda, phi), x00 = x0, y00 = y0, a00 = a0, b00 = b0, c00 = c0;\n resampleStream.point = linePoint;\n }\n\n function ringEnd() {\n resampleLineTo(x0, y0, lambda0, a0, b0, c0, x00, y00, lambda00, a00, b00, c00, maxDepth, stream);\n resampleStream.lineEnd = lineEnd;\n lineEnd();\n }\n\n return resampleStream;\n };\n}\n","import {atan, cos, sin} from \"../math.js\";\nimport {azimuthalInvert} from \"./azimuthal.js\";\nimport projection from \"./index.js\";\n\nexport function stereographicRaw(x, y) {\n var cy = cos(y), k = 1 + cos(x) * cy;\n return [cy * sin(x) / k, sin(y) / k];\n}\n\nstereographicRaw.invert = azimuthalInvert(function(z) {\n return 2 * atan(z);\n});\n\nexport default function() {\n return projection(stereographicRaw)\n .scale(250)\n .clipAngle(142);\n}\n","import {atan, exp, halfPi, log, tan} from \"../math.js\";\nimport {mercatorProjection} from \"./mercator.js\";\n\nexport function transverseMercatorRaw(lambda, phi) {\n return [log(tan((halfPi + phi) / 2)), -lambda];\n}\n\ntransverseMercatorRaw.invert = function(x, y) {\n return [-y, 2 * atan(exp(x)) - halfPi];\n};\n\nexport default function() {\n var m = mercatorProjection(transverseMercatorRaw),\n center = m.center,\n rotate = m.rotate;\n\n m.center = function(_) {\n return arguments.length ? center([-_[1], _[0]]) : (_ = center(), [_[1], -_[0]]);\n };\n\n m.rotate = function(_) {\n return arguments.length ? rotate([_[0], _[1], _.length > 2 ? _[2] + 90 : 90]) : (_ = rotate(), [_[0], _[1], _[2] - 90]);\n };\n\n return rotate([0, 0, 90])\n .scale(159.155);\n}\n","import compose from \"./compose.js\";\nimport {abs, asin, atan2, cos, degrees, pi, radians, sin, tau} from \"./math.js\";\n\nfunction rotationIdentity(lambda, phi) {\n if (abs(lambda) > pi) lambda -= Math.round(lambda / tau) * tau;\n return [lambda, phi];\n}\n\nrotationIdentity.invert = rotationIdentity;\n\nexport function rotateRadians(deltaLambda, deltaPhi, deltaGamma) {\n return (deltaLambda %= tau) ? (deltaPhi || deltaGamma ? compose(rotationLambda(deltaLambda), rotationPhiGamma(deltaPhi, deltaGamma))\n : rotationLambda(deltaLambda))\n : (deltaPhi || deltaGamma ? rotationPhiGamma(deltaPhi, deltaGamma)\n : rotationIdentity);\n}\n\nfunction forwardRotationLambda(deltaLambda) {\n return function(lambda, phi) {\n lambda += deltaLambda;\n if (abs(lambda) > pi) lambda -= Math.round(lambda / tau) * tau;\n return [lambda, phi];\n };\n}\n\nfunction rotationLambda(deltaLambda) {\n var rotation = forwardRotationLambda(deltaLambda);\n rotation.invert = forwardRotationLambda(-deltaLambda);\n return rotation;\n}\n\nfunction rotationPhiGamma(deltaPhi, deltaGamma) {\n var cosDeltaPhi = cos(deltaPhi),\n sinDeltaPhi = sin(deltaPhi),\n cosDeltaGamma = cos(deltaGamma),\n sinDeltaGamma = sin(deltaGamma);\n\n function rotation(lambda, phi) {\n var cosPhi = cos(phi),\n x = cos(lambda) * cosPhi,\n y = sin(lambda) * cosPhi,\n z = sin(phi),\n k = z * cosDeltaPhi + x * sinDeltaPhi;\n return [\n atan2(y * cosDeltaGamma - k * sinDeltaGamma, x * cosDeltaPhi - z * sinDeltaPhi),\n asin(k * cosDeltaGamma + y * sinDeltaGamma)\n ];\n }\n\n rotation.invert = function(lambda, phi) {\n var cosPhi = cos(phi),\n x = cos(lambda) * cosPhi,\n y = sin(lambda) * cosPhi,\n z = sin(phi),\n k = z * cosDeltaGamma - y * sinDeltaGamma;\n return [\n atan2(y * cosDeltaGamma + z * sinDeltaGamma, x * cosDeltaPhi + k * sinDeltaPhi),\n asin(k * cosDeltaPhi - x * sinDeltaPhi)\n ];\n };\n\n return rotation;\n}\n\nexport default function(rotate) {\n rotate = rotateRadians(rotate[0] * radians, rotate[1] * radians, rotate.length > 2 ? rotate[2] * radians : 0);\n\n function forward(coordinates) {\n coordinates = rotate(coordinates[0] * radians, coordinates[1] * radians);\n return coordinates[0] *= degrees, coordinates[1] *= degrees, coordinates;\n }\n\n forward.invert = function(coordinates) {\n coordinates = rotate.invert(coordinates[0] * radians, coordinates[1] * radians);\n return coordinates[0] *= degrees, coordinates[1] *= degrees, coordinates;\n };\n\n return forward;\n}\n","function streamGeometry(geometry, stream) {\n if (geometry && streamGeometryType.hasOwnProperty(geometry.type)) {\n streamGeometryType[geometry.type](geometry, stream);\n }\n}\n\nvar streamObjectType = {\n Feature: function(object, stream) {\n streamGeometry(object.geometry, stream);\n },\n FeatureCollection: function(object, stream) {\n var features = object.features, i = -1, n = features.length;\n while (++i < n) streamGeometry(features[i].geometry, stream);\n }\n};\n\nvar streamGeometryType = {\n Sphere: function(object, stream) {\n stream.sphere();\n },\n Point: function(object, stream) {\n object = object.coordinates;\n stream.point(object[0], object[1], object[2]);\n },\n MultiPoint: function(object, stream) {\n var coordinates = object.coordinates, i = -1, n = coordinates.length;\n while (++i < n) object = coordinates[i], stream.point(object[0], object[1], object[2]);\n },\n LineString: function(object, stream) {\n streamLine(object.coordinates, stream, 0);\n },\n MultiLineString: function(object, stream) {\n var coordinates = object.coordinates, i = -1, n = coordinates.length;\n while (++i < n) streamLine(coordinates[i], stream, 0);\n },\n Polygon: function(object, stream) {\n streamPolygon(object.coordinates, stream);\n },\n MultiPolygon: function(object, stream) {\n var coordinates = object.coordinates, i = -1, n = coordinates.length;\n while (++i < n) streamPolygon(coordinates[i], stream);\n },\n GeometryCollection: function(object, stream) {\n var geometries = object.geometries, i = -1, n = geometries.length;\n while (++i < n) streamGeometry(geometries[i], stream);\n }\n};\n\nfunction streamLine(coordinates, stream, closed) {\n var i = -1, n = coordinates.length - closed, coordinate;\n stream.lineStart();\n while (++i < n) coordinate = coordinates[i], stream.point(coordinate[0], coordinate[1], coordinate[2]);\n stream.lineEnd();\n}\n\nfunction streamPolygon(coordinates, stream) {\n var i = -1, n = coordinates.length;\n stream.polygonStart();\n while (++i < n) streamLine(coordinates[i], stream, 1);\n stream.polygonEnd();\n}\n\nexport default function(object, stream) {\n if (object && streamObjectType.hasOwnProperty(object.type)) {\n streamObjectType[object.type](object, stream);\n } else {\n streamGeometry(object, stream);\n }\n}\n","export default function(methods) {\n return {\n stream: transformer(methods)\n };\n}\n\nexport function transformer(methods) {\n return function(stream) {\n var s = new TransformStream;\n for (var key in methods) s[key] = methods[key];\n s.stream = stream;\n return s;\n };\n}\n\nfunction TransformStream() {}\n\nTransformStream.prototype = {\n constructor: TransformStream,\n point: function(x, y) { this.stream.point(x, y); },\n sphere: function() { this.stream.sphere(); },\n lineStart: function() { this.stream.lineStart(); },\n lineEnd: function() { this.stream.lineEnd(); },\n polygonStart: function() { this.stream.polygonStart(); },\n polygonEnd: function() { this.stream.polygonEnd(); }\n};\n"],"names":[],"sourceRoot":""}